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Multiple Linear Regression
We use linear modeling for a multiple predictor regression:

• there are now      predictors
• the problem cannot be visualized in a scatterplot
• there will be      observations of response and predictors
• goal: estimating the coefficients                     from the data 

IMPORTANT: simple linear regression of the response on 
each of the predictors does not equal multiple regression, 
where all predictors are used simultanously. 
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Versatility of Multiple Linear Regression
Despite that we are using linear models only, we have a versatile 
and powerful tool. While the response is always a continuous 
variable, different predictor types are allowed:

• Continuous Predictors 
Default case, e.g. temperature, distance, pH-value, …

• Transformed Predictors
For example: 

• Powers
We can also use:

• Categorical Predictors
Often used: sex, day of week, political party, …
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Categorical Predictors
The canonical case in linear regression are continuous predictor 
variables such as for example:

 temperature, distance, pressure, velocity, ...

While in linear regression, we cannot have categorical response, it 
is perfectly valid to have categorical predictors:

 yes/no, sex (m/f), type (a/b/c), shift (day/evening/night), ...

Such categorical predictors are often also called factor variables. 
In a linear regression, each level of such a variable is encoded by 
a dummy variable, so that            degrees of freedom are spent. ( 1)
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Example: Binary Categorical Variable
The lathe (in German: Drehbank) dataset:

- lifetime of a cutting tool in a turning machine

- speed of the machine in rpm

- tool type A or B

Dummy variable encoding:
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Interpretation of the Model
 see blackboard…

> summary(lm(hours ~ rpm + tool, data = lathe))

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 36.98560    3.51038  10.536 7.16e-09 ***

rpm         -0.02661    0.00452  -5.887 1.79e-05 ***

toolB 15.00425    1.35967  11.035 3.59e-09 ***

---

Residual standard error: 3.039 on 17 degrees of freedom

Multiple R-squared: 0.9003,  Adjusted R-squared: 0.8886 

F-statistic: 76.75 on 2 and 17 DF,   p-value: 3.086e-09
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The Dummy Variable Fit
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A Model with Interactions
Question: do the slopes need to be identical?

 with the appropriate model, the answer is no!

 see blackboard for model interpretation…
0 1 1 2 2 3 1 2Y x x x x E       
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Different Slopes for the Regression Lines
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Summary Output
> summary(lm(hours ~ rpm * tool, data = lathe))

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 32.774760   4.633472   7.073 2.63e-06 ***

rpm         -0.020970   0.006074  -3.452  0.00328 ** 

toolB 23.970593   6.768973   3.541  0.00272 ** 

rpm:toolB -0.011944   0.008842  -1.351  0.19553    

---

Residual standard error: 2.968 on 16 degrees of freedom

Multiple R-squared: 0.9105,  Adjusted R-squared: 0.8937 

F-statistic: 54.25 on 3 and 16 DF,  p-value: 1.319e-08
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How Complex the Model Needs to Be?
Question 1: do we need different slopes for the two lines?

against

 no, see individual test for the interaction term on previous slide!

Question 2: is there any difference altogether?

against

 this is a hierarchical model comparison
 we try to exclude interaction and dummy variable together

R offers convenient functionality for this test, see next slide!

0 3: 0H   3: 0AH  

0 2 3: 0H    2 3: 0 / 0AH and or  
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Testing the Tool Type Variable
Hierarchical model comparison with anova():

> fit.small <- lm(hours ~ rpm, data=lathe)

> fit.big <- lm(hours ~ rpm * tool, data=lathe)

> anova(fit.small, fit.big)

Model 1: hours ~ rpm

Model 2: hours ~ rpm * tool

Res.Df RSS Df Sum of Sq F    Pr(>F)    

1     18 1282.08                                  

2     16  140.98  2    1141.1 64.755 2.137e-08 ***

 The bigger model, i.e. making a distinction between the tools, 
is significantly better. The main effect is enough, though.
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Categorical Input with More Than 2 Levels
There are now 3 tool types A, B, C:

Main effect model: 

With interactions:

2 3

0 0
1 0
0 1

x x
for observations of type A
for observations of type B
for observations of type C

0 1 1 2 2 3 3y x x x E       

0 1 1 2 2 3 3 4 1 2 5 1 3y x x x x x x x E           
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Three Types of Cutting Tools

500 600 700 800 900 1000

15
20

25
30

35
40

rpm

ho
ur

s

A

A
A

A A

A

A

A

A

A

B

B
B B

B
B

B

B
B

B

C

C

C

C

C

C

C
C

C

C

Durability of Lathe Cutting Tools: 3 Types



15Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2012 – Week 07
Summary Output
> summary(lm(hours ~ rpm * tool, data = abc.lathe)

Coefficients:Estimate Std. Error t value Pr(>|t|)    
(Intercept) 32.774760   4.496024   7.290 1.57e-07 ***
rpm         -0.020970   0.005894  -3.558  0.00160 ** 
toolB 23.970593   6.568177   3.650  0.00127 ** 
toolC 3.803941   7.334477   0.519  0.60876    
rpm:toolB -0.011944   0.008579  -1.392  0.17664    
rpm:toolC 0.012751   0.008984   1.419  0.16869    
---
Residual standard error: 2.88 on 24 degrees of freedom
Multiple R-squared: 0.8906, Adjusted R-squared: 0.8678 
F-statistic: 39.08 on 5 and 24 DF,  p-value: 9.064e-11

This summary is of limited use for deciding about model
complexity. We require hierarchical model comparisons!
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Inference with Categorical Predictors
Do not perform individual hypothesis tests on factors
that have more than 2 levels, they are meaningless!

Question 1: do we have different slopes?

against

Question 2: is there any difference altogether?

against

 Again, R provides convenient functionality: anova()

0 4 5: 0 0H and   4 5: 0 / 0AH and or  

0 2 3 4 5: 0H        2 3 4 5: , , , 0AH any of     



17Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2012 – Week 07

Anova Output
> anova(fit.abc)

Analysis of Variance Table
Df Sum Sq Mean Sq F value    Pr(>F)    

rpm        1  139.08  139.08 16.7641  0.000415 ***
tool       2 1422.47  711.23 85.7321 1.174e-11 ***
rpm:tool 2   59.69   29.84  3.5974  0.043009 *  
Residuals 24  199.10    8.30   

 The interaction term is weakly significant. Thus, there is some 
weak evidence for the necessity of different slopes.

 The p-value for the tool variable includes omitting interaction 
and main effect. Being strongly significant, we have strong 
evidence that tool type distinction is needed. 
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Polynomial Regression
Polynomial Regression = Multiple Linear Regression !!!

Goals: 

- fit a curvilinear relation
- improve the fit between x and y
- determine the polynomial order d

Example:

- Savings dataset: personal savings ~ income per capita

2
0 1 2 ... d

dY x x x E        
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Polynomial Regression Fit
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Polynomial Regression
Output from the model with the linear term only:

> summary(lm(sr ~ ddpi, data = savings))

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)   7.8830     1.0110   7.797 4.46e-10 ***

ddpi          0.4758     0.2146   2.217   0.0314 *  

---

Residual standard error: 4.311 on 48 degrees of freedom

Multiple R-squared: 0.0929, Adjusted R-squared: 0.074 

F-statistic: 4.916 on 1 and 48 DF,  p-value: 0.03139
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Diagnostic Plots
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Quadratic Regression
Add the quadratic term: 

> summary(lm(sr ~ ddpi + I(ddpi^2), data = savings))

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)  5.13038    1.43472   3.576 0.000821 ***

ddpi 1.75752    0.53772   3.268 0.002026 ** 

I(ddpi^2)   -0.09299    0.03612  -2.574 0.013262 *  

---

Residual standard error: 4.079 on 47 degrees of freedom

Multiple R-squared: 0.205, Adjusted R-squared: 0.1711

F-statistic: 6.059 on 2 and 47 DF,  p-value: 0.004559

2
0 1 2Y x x E     
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Diagnostic Plots: Quadratic Regression
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Cubic Regression
Add the cubic term: 

> summary(lm(sr~ddpi + I(ddpi^2) + I(ddpi^3), data = savings)

Coefficients: Estimate Std. Error t value Pr(>|t|)  

(Intercept)  5.145e+00  2.199e+00   2.340   0.0237 *

ddpi 1.746e+00  1.380e+00   1.265   0.2123  

I(ddpi^2)   -9.097e-02  2.256e-01  -0.403   0.6886  

I(ddpi^3)   -8.497e-05  9.374e-03  -0.009   0.9928  

---

Residual standard error: 4.123 on 46 degrees of freedom

Multiple R-squared: 0.205, Adjusted R-squared: 0.1531 

F-statistic: 3.953 on 3 and 46 DF,  p-value: 0.01369

2 3
0 1 2 3Y x x x E       
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Powers Are Strongly Correlated Predictors!
The smaller the x-range, the bigger the problem!

> cor(cbind(ddpi, ddpi2=ddpi^2, ddpi3=ddpi^3))

ddpi ddpi2     ddpi3

ddpi 1.0000000 0.9259671 0.8174527

ddpi2 0.9259671 1.0000000 0.9715650

ddpi3 0.8174527 0.9715650 1.0000000

Way out: use centered predictors!
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Powers Are Strongly Correlated Predictors!
> summary(lm(sr~z.ddpi+I(z.ddpi^2)+I(z.ddpi^3),dat=z.savings)

Coefficients: Estimate Std. Error t value Pr(>|t|)    

(Intercept)  1.042e+01  8.047e-01  12.946  < 2e-16 ***

z.ddpi       1.059e+00  3.075e-01   3.443  0.00124 ** 

I(z.ddpi^2) -9.193e-02  1.225e-01  -0.750  0.45691    

I(z.ddpi^3) -8.497e-05  9.374e-03  -0.009  0.99281

 Coefficients, standard error and tests are different
 Fitted values and global inference remain the same
 Not overly beneficial on this dataset!

 Be careful: extrapolation with polynomials is dangerous!
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Residual Analysis – Model Diagnostics
Why do it? And what is it good for?

a) To make sure that estimates and inference are valid
-
-
-
-

b) Identifying unusual observations
Often, there are just a few observations which "are not in 
accordance" with a model. However, these few can have 
strong impact on model choice, estimates and fit.  

Marcel Dettling, Zurich University of Applied Sciences
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Residual Analysis – Model Diagnostics
Why do it? And what is it good for?

c) Improving the model
- Transformations of predictors and response
- Identifying further predictors or interaction terms
- Applying more general regression models

• There are both model diagnostic graphics, as well as 
numerical summaries. The latter require little intuition and 
can be easier to interpret.

• However, the graphical methods are far more powerful and 
flexible, and are thus to be preferred!

Marcel Dettling, Zurich University of Applied Sciences
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Residuals vs. Errors
All requirements that we made were for the errors    . However, 
they cannot be observed in practice. All that we are left with 
are the residuals    . 

But:

• the residuals     are only estimates of the errors    , and while 
they share some properties, others are different. 

• in particular, even if the errors     are uncorrelated with 
constant variance, the residuals     are not: they are 
correlated and have non-constant variance.

• does residual analysis make sense?
Marcel Dettling, Zurich University of Applied Sciences
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Standardized/Studentized Residuals
Does residual analysis make sense?

• the effect of correlation and non-constant variance in the 
residuals can usually be neglected. Thus, residual analysis 
using raw residuals     is both useful and sensible.

• The residuals can be corrected, such that they have constant 
variance. We then speak of standardized, resp. studentized
residuals.

, where                and               is small.  

• R uses these     for the Normal Plot, the Scale-Location-Plot 
and the Leverage-Plot.

Marcel Dettling, Zurich University of Applied Sciences
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Toolbox for Model Diagnostics
There are 4 "standard plots" in R:
- Residuals vs. Fitted, i.e. Tukey-Anscombe-Plot
- Normal Plot
- Scale-Location-Plot
- Leverage-Plot

Some further tricks and ideas:
- Residuals vs. predictors
- Partial residual plots
- Residuals vs. other, arbitrary variables
- Important: Residuals vs. time/sequence

Marcel Dettling, Zurich University of Applied Sciences
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Example in Model Diagnostics
Under the life-cycle savings hypothesis, the savings ratio 
(aggregate personal saving divided by disposable income) is 
explained by the following variables:

lm(sr ~ pop15 + pop75 + dpi + ddpi, data=LifeCycleSavings)

pop15: percentage of population < 15 years of age
pop75: percentage of population > 75 years of age
dpi: per-capita disposable income
ddpi: percentage rate of change in disposable income

The data are averaged over the decade 1960–1970 to remove 
the business cycle or other short-term fluctuations.
Marcel Dettling, Zurich University of Applied Sciences
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Tukey-Anscombe-Plot
Plot the residuals     versus the fitted values       

Marcel Dettling, Zurich University of Applied Sciences
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Tukey-Anscombe-Plot
Is useful for:
- finding structural model deficiencies, i.e. 
- if that is the case, the response/predictor relation could be

nonlinear, or some predictors could be missing
- it is also possible to detect non-constant variance 

( then, the smoother does not deviate from 0)

When is the plot OK?
- the residuals scatter around the x-axis without any structure
- the smoother line is horizontal, with no systematic deviation
- there are no outliers

Marcel Dettling, Zurich University of Applied Sciences
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Tukey-Anscombe-Plot

Marcel Dettling, Zurich University of Applied Sciences
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Tukey-Anscombe-Plot
When the Tukey-Anscombe-Plot is not OK:

• If structural deficencies are present (             , often also 
called "non-linearities"), the following is recommended:

- "fit a better model", by doing transformations on the 
response and/or the predictors

- sometimes it also means that some important predictors
are missing. These can be completely novel variables,
or also terms of higher order

• Non-constant variance: transformations usually help!
Marcel Dettling, Zurich University of Applied Sciences
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Normal Plot
Plot the residuals     versus qnorm(i/(n+1),0,1)

Marcel Dettling, Zurich University of Applied Sciences
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Normal Plot
Is useful for:
- for identifying non-Gaussian errors:

When is the plot OK? 
- the residuals     must not show any systematic deviation from

line which leads to the 1st and 3rd quartile. 
- a few data points that are slightly "off the line" near the ends

are always encountered and usually tolerable
- skewed residuals need correction: they usually tell that the

model structure is not correct. Transformations may help.
- long-tailed, but symmetrical residuals are not optimal either,

but often tolerable. Alternative: robust regression!
Marcel Dettling, Zurich University of Applied Sciences
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Normal Plot

Marcel Dettling, Zurich University of Applied Sciences
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Scale-Location-Plot
Plot         versus    

Marcel Dettling, Zurich University of Applied Sciences
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Scale-Location-Plot
Is useful for:
- identifying non-constant variance:
- if that is the case, the model has structural deficencies, i.e.

the fitted relation is not correct. Use a transformation!
- there are cases where we expect non-constant variance and 

do not want to use a transformation. This can the be tackled by
applying weighted regression.

When is the plot OK?
- the smoother line runs horizontally along the x-axis, without

any systematic deviations. 

Marcel Dettling, Zurich University of Applied Sciences
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Unusual Observations
• There can be observations which do not fit well with a 

particular model. These are called outliers.

• There can be data points which have strong impact on the 
fitting of the model. These are called influential observations.

• A data point can fall under none, one or both the above 
definitions – there is no other option.

• A leverage point is an observation that lies at a "different 
spot" in predictor space. This is potentially dangerous, 
because it can have strong influence on the fit.

Marcel Dettling, Zurich University of Applied Sciences
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Unusual Observations
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Unusual Observations
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How to Find Unusual Observations?
1) Poor man‘s approach

Repeat the analysis -times, where the -th observation is
left out. Then, the change is recorded.

2) Leverage
If      changes by      , then          is the change in     .
High leverage for a data point (                       ) means that it 
forces the regression fit to adapt to it.

3) Cook‘s Distance

Be careful if Cook's Distance > 1.
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Leverage-Plot
Plot the residuals     versus the leverage      

Marcel Dettling, Zurich University of Applied Sciences
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Leverage-Plot
Is useful for:
- identifying outliers, leverage points and influential observation

at the same time. 

When is the plot OK?
- no extreme outliers in y-direction, no matter where
- high leverage, here  

is always potentially dangerous, especially if it is in 
conjunction with large residuals!

- This is visualized by the Cook's Distance lines in the plot:
>0.5 requires attention, >1 requires much attention!

Marcel Dettling, Zurich University of Applied Sciences
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Leverage-Plot
What to do with unusual observations:

• First check the data for gross errors, misprints, typos, etc. 

• Unusual observations are also often a problem if the input is 
not suitable, i.e. if predictors are extremely skewed, because 
first-aid-transformations were not done. Variable transfor-
mations often help in this situation. 

• Simply omitting these data points is not a very good idea. 
Unusual observations are often very informative and tell 
much about the benefits and limits of a model. 

Marcel Dettling, Zurich University of Applied Sciences


