Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, November 5, 2012

Multiple Linear Regression

We use linear modeling for a multiple predictor regression:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + E$$

- there are now p predictors
- the problem cannot be visualized in a scatterplot
- there will be *n* observations of response and predictors
- goal: estimating the coefficients $\beta_0, \beta_1, ..., \beta_p$ from the data

IMPORTANT: simple linear regression of the response on each of the predictors does not equal multiple regression, where *all predictors are used simultanously*.

Versatility of Multiple Linear Regression

Despite that we are using linear models only, we have a versatile and powerful tool. While the response is always a continuous variable, different predictor types are allowed:

• Continuous Predictors

Default case, e.g. *temperature*, *distance*, *pH-value*, ...

• Transformed Predictors

For example: log(x), sqrt(x), $arcsin(\sqrt{x})$,...

• Powers

We can also use: x^{-1} , x^2 , x^3 , ...

Categorical Predictors

Often used: sex, day of week, political party, ...

Categorical Predictors

The canonical case in linear regression are *continuous predictor variables* such as for example:

→ temperature, distance, pressure, velocity, ...

While in linear regression, we cannot have categorical response, it is perfectly valid to have *categorical predictors*:

 \rightarrow yes/no, sex (m/f), type (a/b/c), shift (day/evening/night), ...

Such categorical predictors are often also called **factor variables**. In a linear regression, each level of such a variable is encoded by a dummy variable, so that $(\ell - 1)$ degrees of freedom are spent.

Example: Binary Categorical Variable

The lathe (in German: Drehbank) dataset:

- y lifetime of a cutting tool in a turning machine
- x_1 speed of the machine in rpm
- x_2 tool type A or B

Dummy variable encoding:

$$x_2 = \begin{cases} 0 & tool \ type \ A \\ 1 & tool \ type \ B \end{cases}$$

Interpretation of the Model

→ see blackboard...

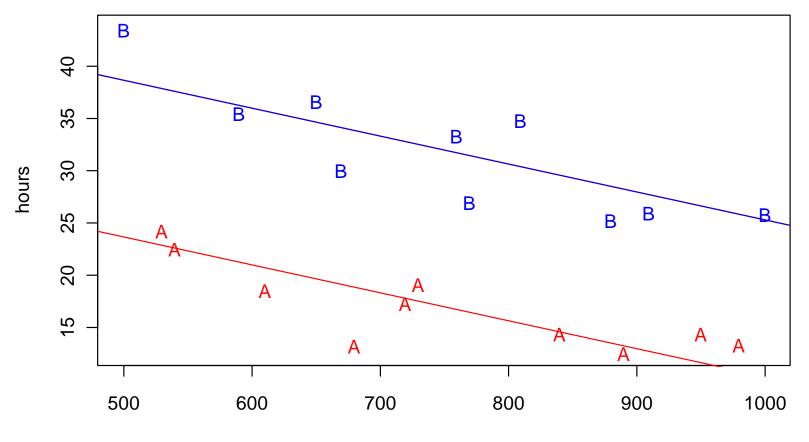
> summary(lm(hours ~ rpm + tool, data = lathe))
Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	36.98560	3.51038	10.536	7.16e-09 ***
rpm	-0.02661	0.00452	-5.887	1.79e-05 ***
toolB	15.00425	1.35967	11.035	3.59e-09 ***

Residual standard error: 3.039 on 17 degrees of freedom Multiple R-squared: 0.9003, Adjusted R-squared: 0.8886 F-statistic: 76.75 on 2 and 17 DF, p-value: 3.086e-09

The Dummy Variable Fit

Durability of Lathe Cutting Tools



rpm

A Model with Interactions

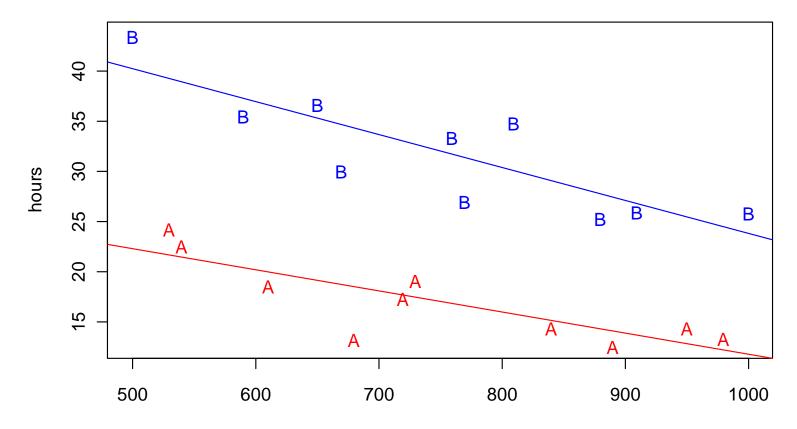
Question: do the slopes need to be identical?

 \rightarrow with the appropriate model, the answer is no!

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + E$$

 \rightarrow see blackboard for model interpretation...

Different Slopes for the Regression Lines



Durability of Lathe Cutting Tools: with Interaction

rpm

Summary Output

> summary(lm(hours ~ rpm * tool, data = lathe))

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	32.774760	4.633472	7.073	2.63e-06	* * *
rpm	-0.020970	0.006074	-3.452	0.00328	* *
toolB	23.970593	6.768973	3.541	0.00272	* *
rpm:toolB	-0.011944	0.008842	-1.351	0.19553	

Residual standard error: 2.968 on 16 degrees of freedom Multiple R-squared: 0.9105, Adjusted R-squared: 0.8937 F-statistic: 54.25 on 3 and 16 DF, p-value: 1.319e-08

How Complex the Model Needs to Be?

Question 1: do we need different slopes for the two lines?

 $H_0: \beta_3 = 0$ against $H_A: \beta_3 \neq 0$

 \rightarrow no, see individual test for the interaction term on previous slide!

Question 2: is there any difference altogether?

 $H_0: \beta_2 = \beta_3 = 0$ against $H_A: \beta_2 \neq 0$ and / or $\beta_3 \neq 0$

 \rightarrow this is a hierarchical model comparison

 \rightarrow we try to exclude interaction and dummy variable together

R offers convenient functionality for this test, see next slide!

Testing the Tool Type Variable

Hierarchical model comparison with anova():

> fit.small <- lm(hours ~ rpm, data=lathe)</pre>

- > fit.big <- lm(hours ~ rpm * tool, data=lathe)</pre>
- > anova(fit.small, fit.big)

Model 1: hours ~ rpm

Model 2: hours ~ rpm * tool

- Res.Df RSS Df Sum of Sq F Pr(>F)
- 1 18 1282.08
- 2 16 140.98 2 1141.1 64.755 2.137e-08 ***
- → The bigger model, i.e. making a distinction between the tools, is significantly better. The main effect is enough, though.

Categorical Input with More Than 2 Levels

There are now 3 tool types A, B, C:

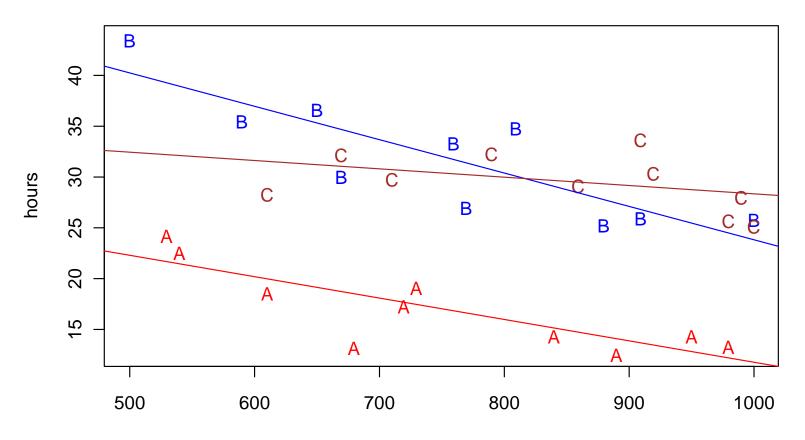
 x_2 x_3 00for observations of type A10for observations of type B01for observations of type C

Main effect model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + E$

With interactions: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_1 x_2 + \beta_5 x_1 x_3 + E$

Three Types of Cutting Tools

Durability of Lathe Cutting Tools: 3 Types



rpm

Applied Statistical Regression AS 2012 – Week 07 Summary Output

> summary(lm(hours ~ rpm * tool, data = abc.lathe)

Estimate	Std. Error	t value	Pr(> t)	
2.774760	4.496024	7.290	1.57e-07	* * *
0.020970	0.005894	-3.558	0.00160	* *
3.970593	6.568177	3.650	0.00127	* *
3.803941	7.334477	0.519	0.60876	
0.011944	0.008579	-1.392	0.17664	
0.012751	0.008984	1.419	0.16869	
	2.774760 0.020970 3.970593 3.803941 0.011944	2.7747604.4960240.0209700.0058943.9705936.5681773.8039417.3344770.0119440.008579	2.7747604.4960247.2900.0209700.005894-3.5583.9705936.5681773.6503.8039417.3344770.5190.0119440.008579-1.392	0.0209700.005894-3.5580.001603.9705936.5681773.6500.001273.8039417.3344770.5190.608760.0119440.008579-1.3920.17664

Residual standard error: 2.88 on 24 degrees of freedom Multiple R-squared: 0.8906, Adjusted R-squared: 0.8678 F-statistic: 39.08 on 5 and 24 DF, p-value: 9.064e-11

This summary is of limited use for deciding about model complexity. We require hierarchical model comparisons!

Inference with Categorical Predictors

Do not perform individual hypothesis tests on factors that have more than 2 levels, they are meaningless!

Question 1: do we have different slopes?

 $H_0: \beta_4 = 0 \text{ and } \beta_5 = 0 \text{ against } H_A: \beta_4 \neq 0 \text{ and } / \text{ or } \beta_5 \neq 0$

Question 2: is there any difference altogether?

 $H_0: \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$ against $H_A: any of \beta_2, \beta_3, \beta_4, \beta_5 \neq 0$

→ Again, R provides convenient functionality: anova()

Anova Output

```
> anova(fit.abc)
```

Analysis of Variance Table Df Sum Sq Mean Sq F value Pr(>F) rpm 1 139.08 139.08 16.7641 0.000415 *** tool 2 1422.47 711.23 85.7321 1.174e-11 *** rpm:tool 2 59.69 29.84 3.5974 0.043009 * Residuals 24 199.10 8.30

- → The interaction term is weakly significant. Thus, there is some weak evidence for the necessity of different slopes.
- → The p-value for the tool variable includes omitting interaction and main effect. Being strongly significant, we have strong evidence that tool type distinction is needed.

Polynomial Regression

Polynomial Regression = Multiple Linear Regression !!!

$$Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \ldots + \beta_d x^d + E$$

Goals:

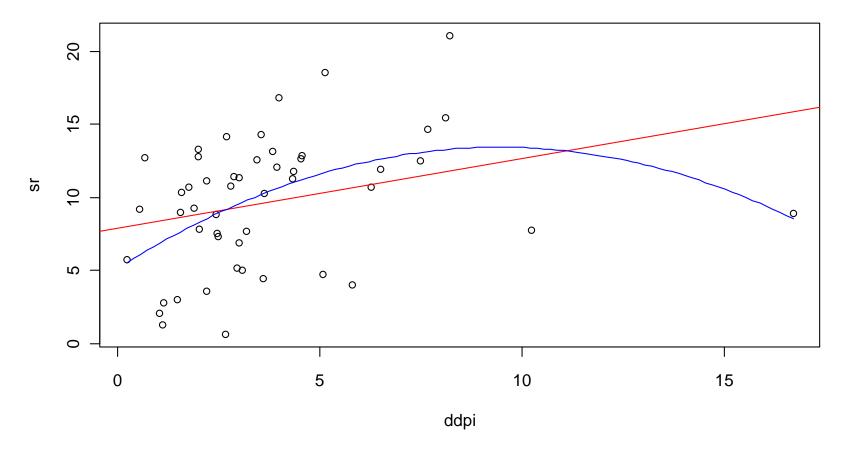
- fit a curvilinear relation
- improve the fit between x and y
- determine the polynomial order d

Example:

- Savings dataset: personal savings ~ income per capita

Polynomial Regression Fit

Savings Data: Polynomial Regression Fit



Polynomial Regression

Output from the model with the linear term only:

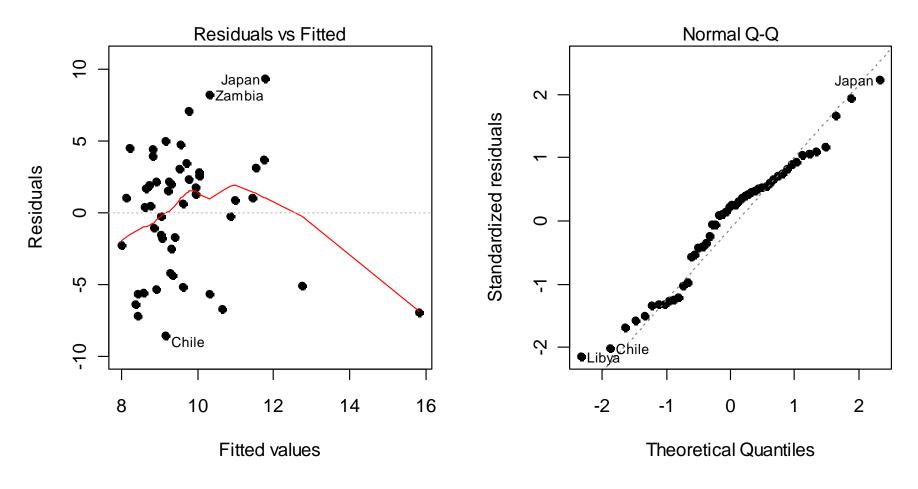
```
> summary(lm(sr ~ ddpi, data = savings))
```

```
Coefficients:
```

	Estimate	Std. Error 1	t value	Pr(> t)	
(Intercept)	7.8830	1.0110	7.797	4.46e-10	* * *
ddpi	0.4758	0.2146	2.217	0.0314	*

Residual standard error: 4.311 on 48 degrees of freedom Multiple R-squared: 0.0929, Adjusted R-squared: 0.074 F-statistic: 4.916 on 1 and 48 DF, p-value: 0.03139

Applied Statistical Regression AS 2012 – Week 07 Diagnostic Plots



Quadratic Regression

Add the quadratic term: $Y = \beta_0 + \beta_1 x + \beta_2 x^2 + E$

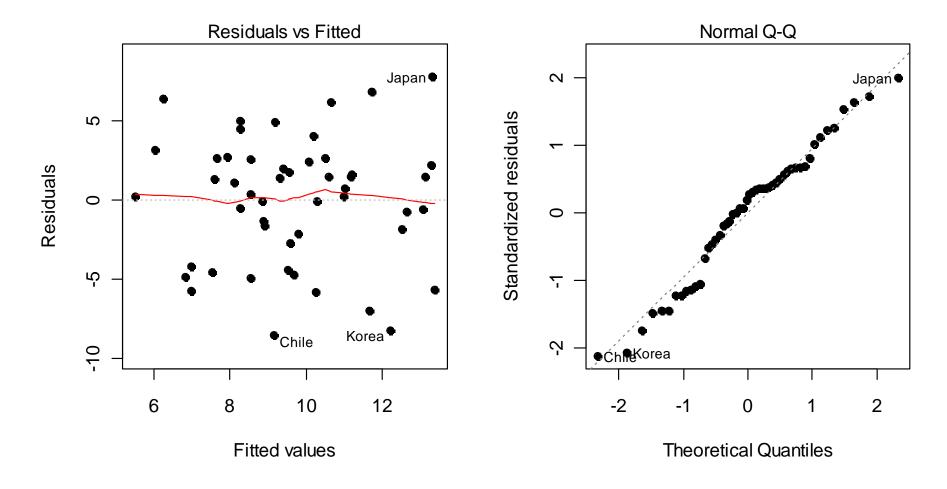
> summary(lm(sr ~ ddpi + I(ddpi^2), data = savings))

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	5.13038	1.43472	3.576	0.000821	* * *
ddpi	1.75752	0.53772	3.268	0.002026	* *
I(ddpi^2)	-0.09299	0.03612	-2.574	0.013262	*

Residual standard error: 4.079 on 47 degrees of freedom Multiple R-squared: 0.205, Adjusted R-squared: 0.1711 F-statistic: 6.059 on 2 and 47 DF, p-value: 0.004559

Diagnostic Plots: Quadratic Regression



Cubic Regression

Add the cubic term: $Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + E$

> summary(lm(sr~ddpi + I(ddpi^2) + I(ddpi^3), data = savings)

Coefficients	s: Estimate	Std. Error	t value	Pr(> t)
(Intercept)	5.145e+00	2.199e+00	2.340	0.0237 *
ddpi	1.746e+00	1.380e+00	1.265	0.2123
I(ddpi^2)	-9.097e-02	2.256e-01	-0.403	0.6886
I(ddpi^3)	-8.497e-05	9.374e-03	-0.009	0.9928

Residual standard error: 4.123 on 46 degrees of freedom Multiple R-squared: 0.205, Adjusted R-squared: 0.1531 F-statistic: 3.953 on 3 and 46 DF, p-value: 0.01369

_ _ _

Powers Are Strongly Correlated Predictors!

The smaller the x-range, the bigger the problem!

Way out: use centered predictors!

$$z_i = (x_i - \overline{x})$$
$$z_i^2 = (x_i - \overline{x})^2$$
$$z_i^3 = (x_i - \overline{x})^3$$

Powers Are Strongly Correlated Predictors!

> summary(lm(sr~z.ddpi+I(z.ddpi^2)+I(z.ddpi^3),dat=z.savings)

Coefficients	s: Estimate	Std. Error	t value	$\Pr(> t)$	
(Intercept)	1.042e+01	8.047e-01	12.946	< 2e-16	* * *
z.ddpi	1.059e+00	3.075e-01	3.443	0.00124	* *
I(z.ddpi^2)	-9.193e-02	1.225e-01	-0.750	0.45691	
I(z.ddpi^3)	-8.497e-05	9.374e-03	-0.009	0.99281	

→ Coefficients, standard error and tests are different
 → Fitted values and global inference remain the same
 → Not overly beneficial on this dataset!

→ Be careful: extrapolation with polynomials is dangerous!

Residual Analysis – Model Diagnostics

Why do it? And what is it good for?

- a) To make sure that estimates and inference are valid
 - $E[E_i] = 0$
 - $Var(E_i) = \sigma_E^2$
 - $Cov(E_i, E_j) = 0$
 - $E_i \sim N(0, \sigma_E^2 I), i.i.d$

b) Identifying unusual observations

Often, there are just a few observations which "are not in accordance" with a model. However, these few can have strong impact on model choice, estimates and fit.

Residual Analysis – Model Diagnostics

Why do it? And what is it good for?

c) Improving the model

- Transformations of predictors and response
- Identifying further predictors or interaction terms
- Applying more general regression models
- There are both model diagnostic graphics, as well as numerical summaries. The latter require little intuition and can be easier to interpret.
- However, the graphical methods are far more powerful and flexible, and are thus to be preferred!

Residuals vs. Errors

All requirements that we made were for the errors E_i . However, they cannot be observed in practice. All that we are left with are the residuals r_i .

But:

- the residuals r_i are only estimates of the errors E_i , and while they share some properties, others are different.
- in particular, even if the errors E_i are uncorrelated with constant variance, the residuals r_i are not: they are correlated and have non-constant variance.
- does residual analysis make sense?

Standardized/Studentized Residuals

Does residual analysis make sense?

- the effect of correlation and non-constant variance in the residuals can usually be neglected. Thus, residual analysis using raw residuals r_i is both useful and sensible.
- The residuals can be corrected, such that they have constant variance. We then speak of standardized, resp. studentized residuals.

$$\tilde{r}_i = \frac{r_i}{\hat{\sigma}_{\varepsilon} \cdot \sqrt{1 - h_{ii}}}$$
, where $Var(\tilde{r}_i) = 1$ and $Cor(\tilde{r}_i, \tilde{r}_j)$ is small.

• R uses these \tilde{r}_i for the Normal Plot, the Scale-Location-Plot and the Leverage-Plot.

Marcel Dettling, Zurich University of Applied Sciences

Toolbox for Model Diagnostics

There are 4 "standard plots" in R:

- Residuals vs. Fitted, i.e. Tukey-Anscombe-Plot
- Normal Plot
- Scale-Location-Plot
- Leverage-Plot

Some further tricks and ideas:

- Residuals vs. predictors
- Partial residual plots
- Residuals vs. other, arbitrary variables
- Important: Residuals vs. time/sequence

Example in Model Diagnostics

Under the life-cycle savings hypothesis, the savings ratio (aggregate personal saving divided by disposable income) is explained by the following variables:

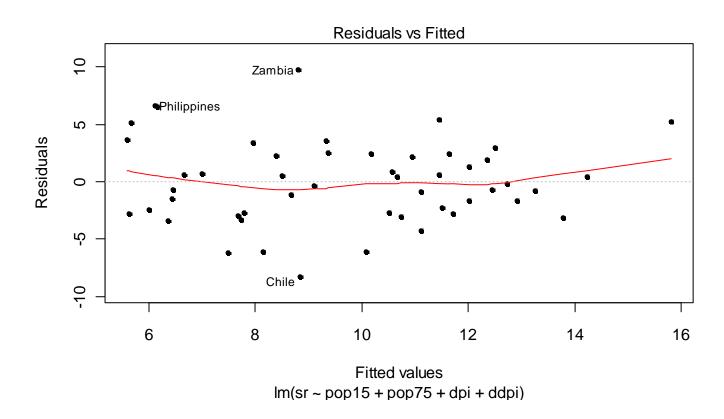
lm(sr ~ pop15 + pop75 + dpi + ddpi, data=LifeCycleSavings)

- **pop15**: percentage of population < 15 years of age
- pop75: percentage of population > 75 years of age
- dpi: per-capita disposable income
- adpi: percentage rate of change in disposable income

The data are averaged over the decade 1960–1970 to remove the business cycle or other short-term fluctuations.

Tukey-Anscombe-Plot

Plot the residuals r_i versus the fitted values \hat{y}_i



Tukey-Anscombe-Plot

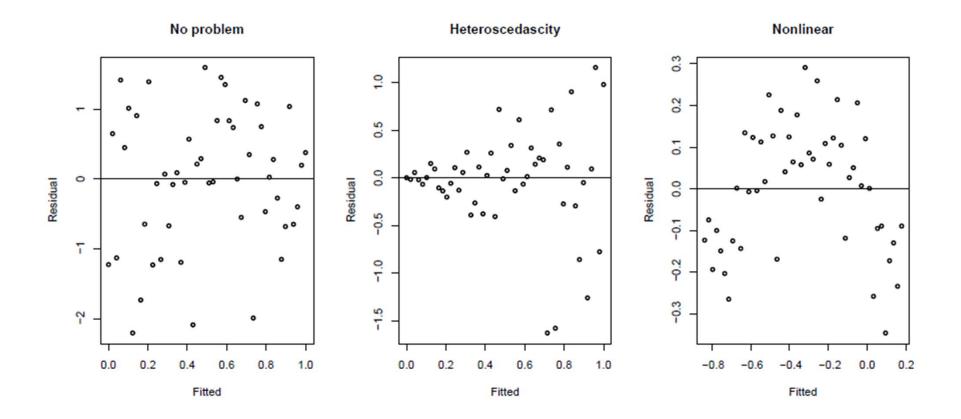
Is useful for:

- finding structural model deficiencies, i.e. $E[E_i] \neq 0$
- if that is the case, the response/predictor relation could be nonlinear, or some predictors could be missing
- it is also possible to detect non-constant variance
 (→ then, the smoother does not deviate from 0)

When is the plot OK?

- the residuals scatter around the x-axis without any structure
- the smoother line is horizontal, with no systematic deviation
- there are no outliers

Tukey-Anscombe-Plot



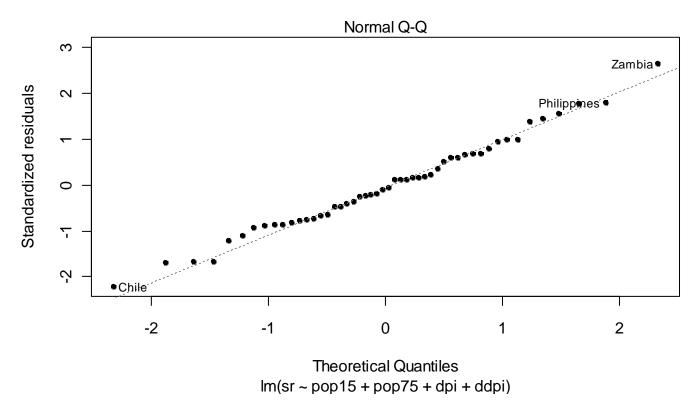
Tukey-Anscombe-Plot

When the Tukey-Anscombe-Plot is not OK:

- If structural deficencies are present ($E[E_i] \neq 0$, often also called "non-linearities"), the following is recommended:
 - "fit a better model", by doing transformations on the response and/or the predictors
 - sometimes it also means that some important predictors are missing. These can be completely novel variables, or also terms of higher order
- Non-constant variance: transformations usually help!

Normal Plot

Plot the residuals \tilde{r}_i versus qnorm(i/(n+1),0,1)



Normal Plot

Is useful for:

- for identifying non-Gaussian errors: $E_i \sim N(0, \sigma_E^2 I)$

When is the plot OK?

- the residuals \tilde{r}_i must not show any systematic deviation from line which leads to the 1st and 3rd quartile.
- a few data points that are slightly "off the line" near the ends are always encountered and usually tolerable
- skewed residuals need correction: they usually tell that the model structure is not correct. Transformations may help.
- long-tailed, but symmetrical residuals are not optimal either, but often tolerable. Alternative: robust regression!

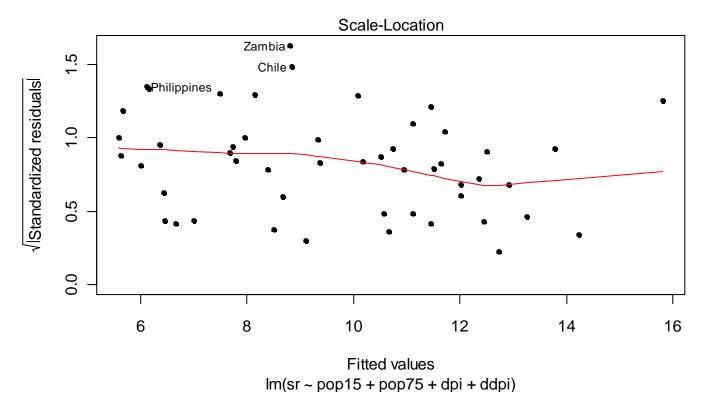
Normal Plot

Normal Q-Q Plot Normal Q-Q Plot 00 Lognormal Residuals 9 ELLO OD Normal Residuals 2 5 0 4 -0 ∞ 3 0 2 7 -O OCCURENTING 0 000 0 0 -2 2 2 0 1 -2 n **Theoretical Quantiles Theoretical Quantiles** Normal Q-Q Plot Normal Q-Q Plot 250 00^{00 0} Cauchy Residuals Uniform Residuals 0.8 150 0.4 20 00 cref 0 00000000 0 00000 0 COLLEGE C 0.0 0 2 -2 2 n -2 0 Theoretical Quantiles Theoretical Quantiles

Marcel Dettling, Zurich University of Applied Sciences

Scale-Location-Plot

Plot $\sqrt{|\tilde{r}_i|}$ versus \hat{y}_i



Scale-Location-Plot

Is useful for:

- identifying non-constant variance: $Var(E_i) \neq \sigma_E^2$
- if that is the case, the model has structural deficencies, i.e. the fitted relation is not correct. Use a transformation!
- there are cases where we expect non-constant variance and do not want to use a transformation. This can the be tackled by applying weighted regression.

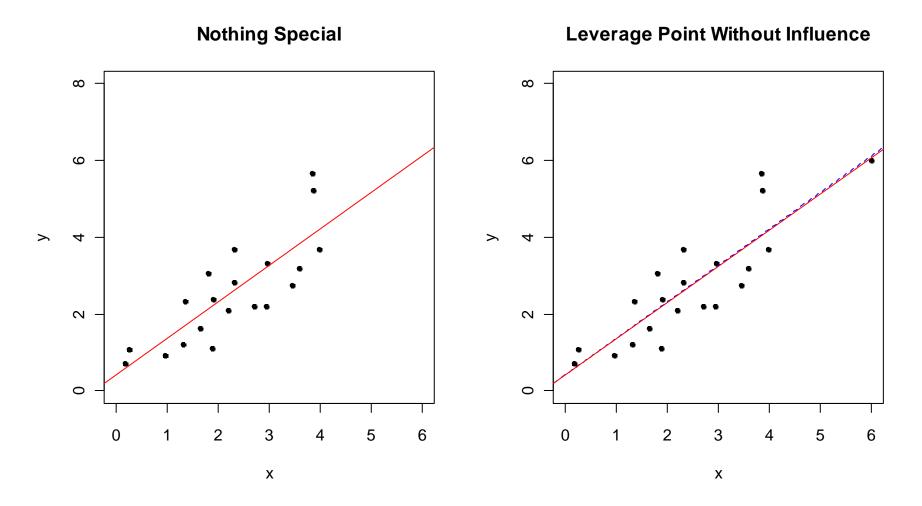
When is the plot OK?

- the smoother line runs horizontally along the x-axis, without any systematic deviations.

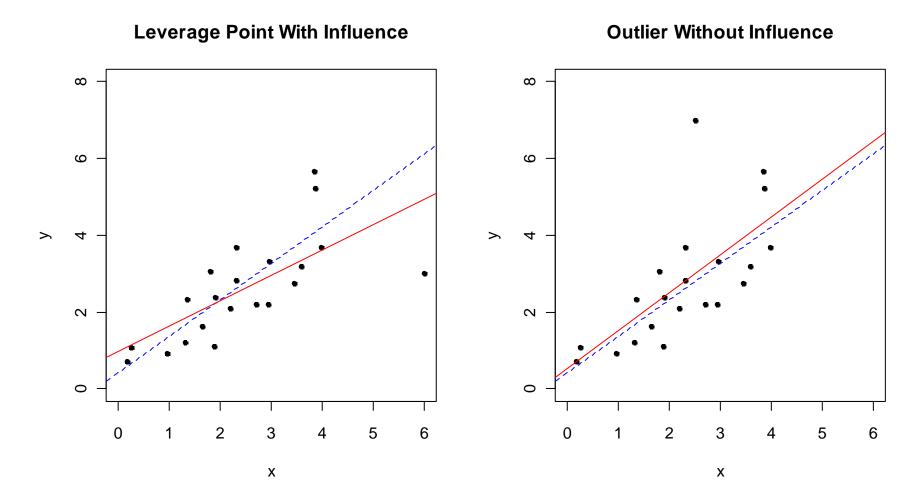
Unusual Observations

- There can be observations which do not fit well with a particular model. These are called *outliers*.
- There can be data points which have strong impact on the fitting of the model. These are called *influential observations*.
- A data point can fall under **none**, **one or both** the above definitions there is no other option.
- A *leverage point* is an observation that lies at a "different spot" in predictor space. This is potentially dangerous, because it can have strong influence on the fit.

Unusual Observations



Unusual Observations



How to Find Unusual Observations?

1) Poor man's approach

Repeat the analysis n-times, where the i-th observation is left out. Then, the change is recorded.

2) Leverage

If y_i changes by Δy_i , then $h_{ii}\Delta y_i$ is the change in \hat{y}_i . High leverage for a data point $(h_{ii} > 2(p+1)/n)$ means that it forces the regression fit to adapt to it.

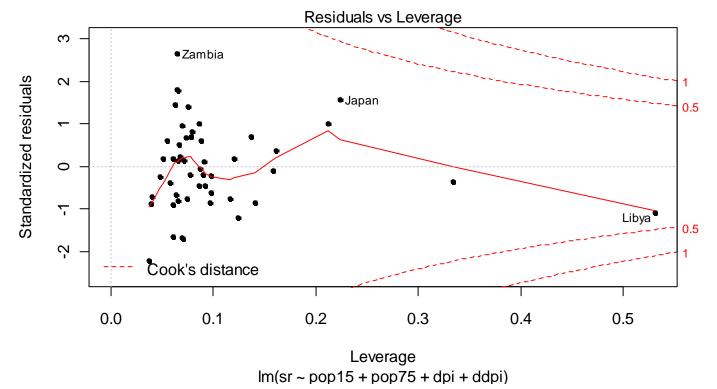
3) Cook's Distance

$$D_{i} = \frac{\sum (\hat{y}_{j} - y_{j(i)})^{2}}{(p+1)\sigma_{E}^{2}} = \frac{h_{ii}}{1 - h_{ii}} \cdot \frac{r_{i}^{*2}}{(p+1)}$$

Be careful if Cook's Distance > 1

Leverage-Plot

Plot the residuals \tilde{r}_i versus the leverage h_{ii}



Leverage-Plot

Is useful for:

 identifying outliers, leverage points and influential observation at the same time.

When is the plot OK?

- no extreme outliers in y-direction, no matter where
- high leverage, here $h_{ii} > 2(p+1)/n = 2(4+1)/50 = 0.2$ is always potentially dangerous, especially if it is in conjunction with large residuals!
- This is visualized by the Cook's Distance lines in the plot:
 >0.5 requires attention, >1 requires much attention!

Leverage-Plot

What to do with unusual observations:

- First check the data for gross errors, misprints, typos, etc.
- Unusual observations are also often a problem if the input is not suitable, i.e. if predictors are extremely skewed, because first-aid-transformations were not done. Variable transformations often help in this situation.
- Simply omitting these data points is not a very good idea. Unusual observations are often very informative and tell much about the benefits and limits of a model.