Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, October 29, 2012

Multiple Linear Regression

We use linear modeling for a multiple predictor regression:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + E$$

- there are now p predictors
- the problem cannot be visualized in a scatterplot
- there will be *n* observations of response and predictors
- goal: estimating the coefficients $\beta_0, \beta_1, ..., \beta_p$ from the data

IMPORTANT: simple linear regression of the response on each of the predictors does not equal multiple regression, where *all predictors are used simultanously*.

Comparing Hierachical Models

Idea: Correctly comparing two multiple linear regression models when the smaller has >1 predictor less than the bigger.

Where and why do we need this?

- for the 3 pollution variables in the mortality data.
- soon also for the so-called factor/dummy variables.

Idea: We compare the residual sum of squares (RSS):

Big model: $y = \beta_0 + \beta_1 x_1 + \ldots + \beta_q x_q + \beta_{q+1} x_{q+1} + \ldots + \beta_p x_p$ Small model: $y = \beta_0 + \beta_1 x_1 + \ldots + \beta_q x_q$

The big model must contain all the predictors from the small model, else they are not hierarchical and the test does not apply.

The Global F-Test

Idea: is there any relation between response and predictors?

This is another hierachical model comparison. The full model is tested against a small model with only the intercept, but without any predictors.

We are testing the null $H_0: \beta_1 = \beta_2 = ... = \beta_p = 0$ against the alternative $H_A: \beta_j \neq 0$ for at least one predictor x_j . This test is again based on comparing the RSS:

$$F = \frac{n - (p+1)}{p} \cdot \frac{RSS_{Small} - RSS_{Big}}{RSS_{Big}} \sim F_{p,n-(p+1)}$$

 \rightarrow Test statistic and p-value are shown in the R summary!

Reading R-Output

```
> summary(fit.orig)
Coefficients:
```

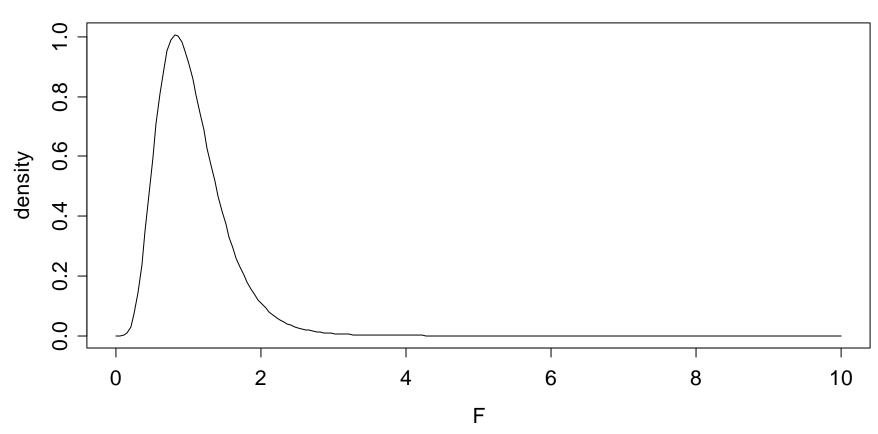
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1496.4915	572.7205	2.613	0.01224 *
JanTemp	-2.4479	0.8808	-2.779	0.00798 **
•••				
Dens	11.9490	16.1836	0.738	0.46423
NonWhite	326.6757	62.9092	5.193	5.09e-06 ***
WhiteCollar	-146.3477	112.5510	-1.300	0.20028

• • •

Residual standard error: 34.23 on 44 degrees of freedom Multiple R-squared: 0.7719, Adjusted R-squared: 0.6994 F-statistic: 10.64 on 14 and 44 DF, p-value: 6.508e-10

Note: due to space constraints, this is only a part of the output!

Density Function of the F-distribution



The F-distribution with 14 and 47 degrees of freedom

Prediction

The regression equation can be employed to predict the response value for any given predictor configuration.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_{.1} + \hat{\beta}_2 x_{.2} + \dots + \hat{\beta}_p x_{.p}$$

Note:

This can be a predictor configuration that was not part of the original data. For example a (new) city, for which only the predictors are known, but the mortality is not.

Be careful:

Only interpolation, i.e. prediction within the range of observed y-values works well, extrapolation yields non-reliable results.

Prediction in R

We can use the regression fit for predicting new observations. The syntax is as follows

- > fit.big <- lm(Mortality ~ ., data=mt)</pre>
- > dat <- data.frame(JanTemp=..., ...)</pre>
- > predict(fit.big, newdata=dat)
- 1 932.488

The x-values need to be provided in a data frame. The variable (column) names need to be identical to the predictor names. Of course, all predictors need to be present.

Then, it is simply applying the predict()-procedure.

Confidence- and Prediction Interval

The confidence interval for the fitted value and the prediction interval for future observation also exist in multiple regression.

- a) 95%-Cl for the fitted value E[y|x]
 > predict(fit, newdata=dat, "confidence")
- b) 95%-PI for a future observation \hat{y} : > predict(fit, newdata=dat, "prediction")
- The visualization of these intervals is no longer possible in the case of multiple regression
- It is possible to write explicit formulae for the intervals using the matrix notation. We omit them here.

Reading R-Output

```
> summary(fit.orig)
Coefficients:
```

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	1496.4915	572.7205	2.613	0.01224	*
JanTemp	-2.4479	0.8808	-2.779	0.00798	* *
• • •					
Dens	11.9490	16.1836	0.738	0.46423	
NonWhite	326.6757	62.9092	5.193	5.09e-06	* * *
WhiteCollar	-146.3477	112.5510	-1.300	0.20028	

• • •

_ _ _

Residual standard error: 34.23 on 44 degrees of freedom Multiple R-squared: 0.7719, Adjusted R-squared: 0.6994 F-statistic: 10.64 on 14 and 44 DF, p-value: 6.508e-10

Note: due to space constraints, this is only a part of the output!

Versatility of Multiple Linear Regression

Despite that we are using linear models only, we have a versatile and powerful tool. While the response is always a continuous variable, different predictor types are allowed:

Continuous Predictors

Default case, e.g. *temperature*, *distance*, *pH-value*, ...

• Transformed Predictors

For example: log(x), sqrt(x), $arcsin(\sqrt{x})$,...

• Powers

We can also use: x^{-1} , x^2 , x^3 , ...

Categorical Predictors

Often used: sex, day of week, political party, ...

First-Aid Transformations

This is a guideline as to how the variables in a regression can and should be transformed. The recommendation is to always apply these except if there are strong reasons against. From a practical viewpoint, they stabilize variance and improve the fit.

Absolute values, concentrations, right-skewed variables: log-transformation: $x' = \log(x)$ and also $y' = \log(y)$

Count variables:

square-root transformation: $x' = \sqrt{x}$, maybe also $x' = \log(x)$

Proportions:

arcsine transformation: $x' = \sin^{-1}(\sqrt{x})$

First-Aid Transformations

Example: Zurich Airport Data

Both the *predictor ATM* and the *response Pax* are count variables that only take positive values. They are due to a FAT. Because of the easier interpretation, we prefer to take logarithms here.

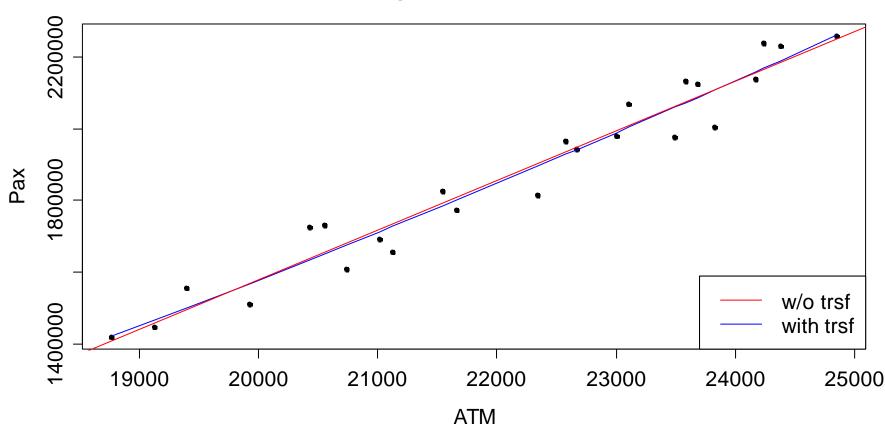
 $ATM' = \log(ATM)$ $Pax' = \log(Pax)$

The R code is as follows:

> fit.log <- lm(log(Pax) ~ log(ATM), data=...)</pre>

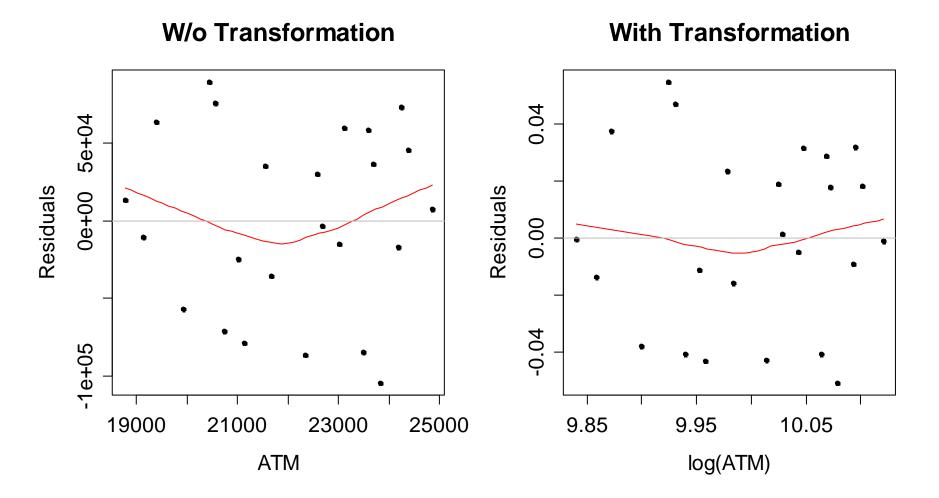
The fit is no longer a straight line but a curve. And there is no longer a linear increase in Pax with rising ATM, but...

Straight Line vs. log-log Fit



Zurich Airport Data: Pax vs. ATM

Comparison of Residuals vs. Predictor



Conclusions for Zurich Airport Data

The assumptions on the error are better fulfilled and we obtain smaller residuals after the log-log transformation. Thus, this is the more accurate model.

The relation is: $y = \exp(-2.116) \cdot x^{1.655}$, resp. $Pax = 0.120 \cdot ATM^{1.655}$

Thus, if ATM increases by 1%, then Pax increases by 1.655%. This is due to bigger airplanes used and higher seat load factor during busy months.

FAT for the Mortality Data

The following variable transformations are recommended:

> str(mortality)		
'data.frame':	59	obs. of 16 variab	oles:
\$ Mortality :	num	922 998 962	
\$ JanTemp :	num	27 23 29 45	
\$ JulyTemp :	num	71 72 74 79	
\$ RelHum :	num	59 57 54 56	
\$ Rain :	num	36 35 44 47	
\$ Educ :	num	11.4 11 9.8	
\$ Dens :	num	3243 4281	
\$ NonWhite :	num	8.8 3.5 0.8	
\$ WhiteCollar:	num	42.6 50.7	
\$ Pop :	num	660328 83588	
\$ House :	num	3.34 3.14	
\$ Income :	num	29560 31458	
\$ HC :	num	21 8 6 18	
\$ NOx :	num	15 10 6 8	
\$ SO2 :	num	59 39 33 24	

The Effect of Variable Transformations

Under non-linear variable transformations (i.e. *log*, *sqrt* or *arcsin*), most results change: *coefficients*, *fitted values*, *tests* & *p-values*.

> anova(fit.trsf.big, fit.trsf.small)

Analysis of Variance Table

- Model 1: Mortality ~ JanTemp + JulyTemp + RelHum + Rain + Educ + Dens + NonWhite + WhiteCollar + Pop + House + Income + log(HC) + log(NOx) + log(SO2)
- Model 2: Mortality ~ JanTemp + JulyTemp + RelHum + Rain + Educ + Dens + NonWhite + WhiteCollar + Pop + House + Income

Res.Df RSS Df Sum of Sq F Pr(>F)

- 1 45 53917
- 2 48 65672 -3 -11755 3.2703 0.02967 *

Linear Variable Transformations

Example: American Automobile Dataset

```
> head(mtcars, 10)
                 mpg cyl disp hp drat wt gsec vs am
                21.0
                       6 160.0 110 3.90 2.620 16.46 0
Mazda RX4
                                                     1
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02
                                                     1
                                                  0
Datsun 710
           22.8 4 108.0
                               93 3.85 2.320 18.61 1 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1
                                                     0
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02
                                                  0
                                                     0
                18.1 6 225.0 105 2.76 3.460 20.22
Valiant
                                                  1
                                                     0
Duster 360
              14.3 8 360.0 245 3.21 3.570 15.84
                                                  0
                                                     0
              24.4 4 146.7 62 3.69 3.190 20.00
Merc 240D
                                                  1
                                                     0
                22.8 4 140.8 95 3.92 3.150 22.90
Merc 230
                                                  1
                                                     0
                19.2
                       6 167.6 123 3.92 3.440 18.30
Merc 280
                                                  1
                                                     0
```

→ Fuel consumption is measured in mpg instead of I/100km and displacement in cubic inches but not ccm. Can we convert?

Linear Variable Transformations

Changing units, i.e. all linear variable transformations are allowed. While the regression coefficients change, fitted values, test stats, p-values and model diagnostics remain the very same!

Since the results are easier to read, it has proven very important to use well-readable and natural units for regression analysis

mile	<-	1.609344
gallon	<-	3.78541178
1.100km	<-	100/(dat\$mpg*mile/gallon)
inch	<-	2.54
CCM	<-	dat\$disp*(2.54^3)

Categorical Predictors

The canonical case in linear regression are *continuous predictor variables* such as for example:

→ temperature, distance, pressure, velocity, ...

While in linear regression, we cannot have categorical response, it is perfectly valid to have *categorical predictors*:

 \rightarrow yes/no, sex (m/f), type (a/b/c), shift (day/evening/night), ...

Such categorical predictors are often also called **factor variables**. In a linear regression, each level of such a variable is encoded by a dummy variable, so that $(\ell - 1)$ degrees of freedom are spent.

Example: Binary Categorical Variable

The lathe (in German: Drehbank) dataset:

- y lifetime of a cutting tool in a turning machine
- x_1 speed of the machine in rpm
- x_2 tool type A or B

Dummy variable encoding:

$$x_2 = \begin{cases} 0 & tool \ type \ A \\ 1 & tool \ type \ B \end{cases}$$

Interpretation of the Model

→ see blackboard...

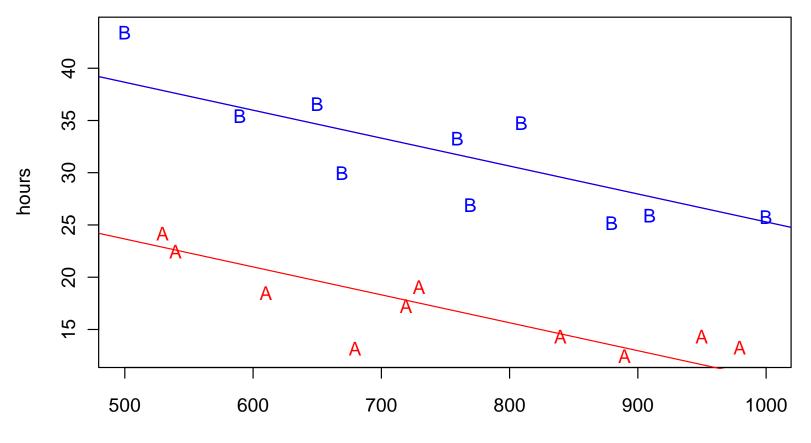
> summary(lm(hours ~ rpm + tool, data = lathe))
Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	36.98560	3.51038	10.536	7.16e-09	* * *
rpm	-0.02661	0.00452	-5.887	1.79e-05	* * *
toolB	15.00425	1.35967	11.035	3.59e-09	* * *

Residual standard error: 3.039 on 17 degrees of freedom Multiple R-squared: 0.9003, Adjusted R-squared: 0.8886 F-statistic: 76.75 on 2 and 17 DF, p-value: 3.086e-09

The Dummy Variable Fit

Durability of Lathe Cutting Tools



rpm

A Model with Interactions

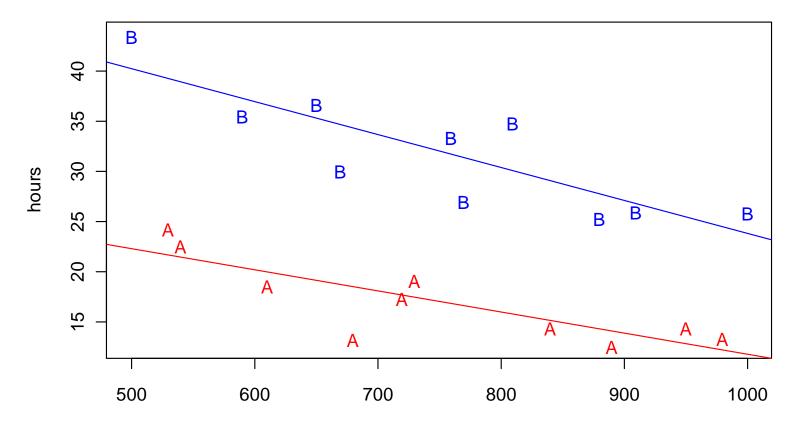
Question: do the slopes need to be identical?

 \rightarrow with the appropriate model, the answer is no!

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + E$$

→ see blackboard for model interpretation...

Different Slopes for the Regression Lines



Durability of Lathe Cutting Tools: with Interaction

rpm

Summary Output

> summary(lm(hours ~ rpm * tool, data = lathe))

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	32.774760	4.633472	7.073	2.63e-06	* * *
rpm	-0.020970	0.006074	-3.452	0.00328	* *
toolB	23.970593	6.768973	3.541	0.00272	* *
rpm:toolB	-0.011944	0.008842	-1.351	0.19553	

Residual standard error: 2.968 on 16 degrees of freedom Multiple R-squared: 0.9105, Adjusted R-squared: 0.8937 F-statistic: 54.25 on 3 and 16 DF, p-value: 1.319e-08

How Complex the Model Needs to Be?

Question 1: do we need different slopes for the two lines?

 $H_0: \beta_3 = 0$ against $H_A: \beta_3 \neq 0$

 \rightarrow no, see individual test for the interaction term on previous slide!

Question 2: is there any difference altogether?

 $H_0: \beta_2 = \beta_3 = 0$ against $H_A: \beta_2 \neq 0$ and / or $\beta_3 \neq 0$

 \rightarrow this is a hierarchical model comparison

 \rightarrow we try to exclude interaction and dummy variable together

R offers convenient functionality for this test, see next slide!

Testing the Tool Type Variable

Hierarchical model comparison with anova():

> fit.small <- lm(hours ~ rpm, data=lathe)</pre>

- > fit.big <- lm(hours ~ rpm * tool, data=lathe)</pre>
- > anova(fit.small, fit.big)

Model 1: hours ~ rpm

Model 2: hours ~ rpm * tool

- Res.Df RSS Df Sum of Sq F Pr(>F)
- 1 18 1282.08
- 2 16 140.98 2 1141.1 64.755 2.137e-08 ***
- → The bigger model, i.e. making a distinction between the tools, is significantly better. The main effect is enough, though.

Categorical Input with More Than 2 Levels

There are now 3 tool types A, B, C:

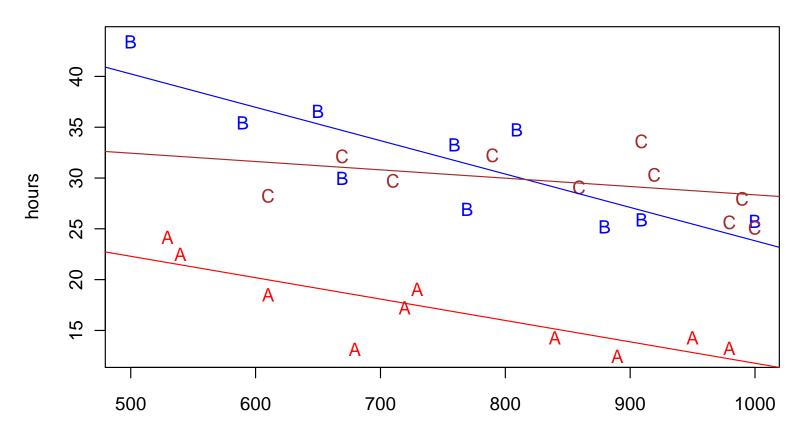
 x_2 x_3 00for observations of type A10for observations of type B01for observations of type C

Main effect model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + E$

With interactions: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_1 x_2 + \beta_5 x_1 x_3 + E$

Three Types of Cutting Tools

Durability of Lathe Cutting Tools: 3 Types



rpm

Applied Statistical Regression AS 2012 – Week 06 Summary Output

> summary(lm(hours ~ rpm * tool, data = abc.lathe)

Coefficients:Estimate		t value	Pr(> t)	
2.774760	4.496024	7.290	1.57e-07	* * *
0.020970	0.005894	-3.558	0.00160	* *
3.970593	6.568177	3.650	0.00127	* *
3.803941	7.334477	0.519	0.60876	
0.011944	0.008579	-1.392	0.17664	
0.012751	0.008984	1.419	0.16869	
	2.774760 0.020970 3.970593 3.803941 0.011944	2.7747604.4960240.0209700.0058943.9705936.5681773.8039417.3344770.0119440.008579	2.7747604.4960247.2900.0209700.005894-3.5583.9705936.5681773.6503.8039417.3344770.5190.0119440.008579-1.392	0.0209700.005894-3.5580.001603.9705936.5681773.6500.001273.8039417.3344770.5190.608760.0119440.008579-1.3920.17664

Residual standard error: 2.88 on 24 degrees of freedom Multiple R-squared: 0.8906, Adjusted R-squared: 0.8678 F-statistic: 39.08 on 5 and 24 DF, p-value: 9.064e-11

This summary is of limited use for deciding about model complexity. We require hierarchical model comparisons!

Inference with Categorical Predictors

Do not perform individual hypothesis tests on factors that have more than 2 levels, they are meaningless!

Question 1: do we have different slopes?

 $H_0: \beta_4 = 0 \text{ and } \beta_5 = 0 \text{ against } H_A: \beta_4 \neq 0 \text{ and } / \text{ or } \beta_5 \neq 0$

Question 2: is there any difference altogether?

 $H_0: \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$ against $H_A: any of \beta_2, \beta_3, \beta_4, \beta_5 \neq 0$

→ Again, R provides convenient functionality: anova()

Applied Statistical Regression AS 2012 – Week 06 Anova Output

```
> anova(fit.abc)
```

Analysis of Variance Table Df Sum Sq Mean Sq F value Pr(>F) rpm 1 139.08 139.08 16.7641 0.000415 *** tool 2 1422.47 711.23 85.7321 1.174e-11 *** rpm:tool 2 59.69 29.84 3.5974 0.043009 * Residuals 24 199.10 8.30

- → The interaction term is weakly significant. Thus, there is some weak evidence for the necessity of different slopes.
- → The p-value for the tool variable includes omitting interaction and main effect. Being strongly significant, we have strong evidence that tool type distinction is needed.

Fazit über Vielfalt

Modellbeispiel zeigen

 $Y = x + x2 + \log(x) + x1^*x2 \text{ etc...} \text{ (siehe vorne)}$

Wie entscheiden:

- Trsf. First Aid oder Modelldiagnostik
- Interaktionen: Testen/Variablenselektion oder Modelldiagnostik

Das Erkennen von Modelldefiziter und $x = \sqrt{x}$ Verbesserungsmöglichkeiten unterscheidet den Profi vom Anfänger. Viele Tools stehen zur Verfügung. Wir lernen sie $x' = \sin^{-1}(\sqrt{x})$