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Multiple Linear Regression
We use linear modeling for a multiple predictor regression:

• there are now      predictors
• the problem cannot be visualized in a scatterplot
• there will be      observations of response and predictors
• goal: estimating the coefficients                     from the data 

IMPORTANT: simple linear regression of the response on 
each of the predictors does not equal multiple regression, 
where all predictors are used simultanously. 
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Comparing Hierachical Models
Idea: Correctly comparing two multiple linear regression models 

when the smaller has >1 predictor less than the bigger.

Where and why do we need this?
- for the 3 pollution variables in the mortality data.
- soon also for the so-called factor/dummy variables.

Idea: We compare the residual sum of squares (RSS):

Big model:
Small model:

The big model must contain all the predictors from the small 
model, else they are not hierarchical and the test does not apply.
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The Global F-Test
Idea: is there any relation between response and predictors?

This is another hierachical model comparison. The full model is 
tested against a small model with only the intercept, but without 
any predictors.

We are testing the null                                              against the 
alternative                      for at least one predictor     . This test is 
again based on comparing the RSS:

 Test statistic and p-value are shown in the R summary!
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Reading R-Output
> summary(fit.orig)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept) 1496.4915   572.7205   2.613  0.01224 *  
JanTemp -2.4479     0.8808  -2.779  0.00798 ** 
...
Dens          11.9490    16.1836   0.738  0.46423    
NonWhite 326.6757    62.9092   5.193 5.09e-06 ***
WhiteCollar -146.3477   112.5510  -1.300  0.20028    
...
---
Residual standard error: 34.23 on 44 degrees of freedom
Multiple R-squared: 0.7719, Adjusted R-squared: 0.6994 
F-statistic: 10.64 on 14 and 44 DF,  p-value: 6.508e-10

Note: due to space constraints, this is only a part of the output!
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Density Function of the F-distribution
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Prediction
The regression equation can be employed to predict 
the response value for any given predictor configuration.

Note: 
This can be a predictor configuration that was not part of the 
original data. For example a (new) city, for which only the 
predictors are known, but the mortality is not. 

Be careful:
Only interpolation, i.e. prediction within the range of observed 
y-values works well, extrapolation yields non-reliable results.
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Prediction in R
We can use the regression fit for predicting new observations. 
The syntax is as follows

> fit.big <- lm(Mortality ~ ., data=mt)
> dat <- data.frame(JanTemp=..., ...) 
> predict(fit.big, newdata=dat)
1 932.488

The x-values need to be provided in a data frame. The variable 
(column) names need to be identical to the predictor names. Of 
course, all predictors need to be present.

Then, it is simply applying the predict()-procedure.
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Confidence- and Prediction Interval
The confidence interval for the fitted value and the prediction 
interval for future observation also exist in multiple regression.

a) 95%-CI for the fitted value
> predict(fit, newdata=dat, "confidence")

b) 95%-PI for a future observation    :
> predict(fit, newdata=dat, "prediction")

• The visualization of these intervals is no longer possible 
in the case of multiple regression

• It is possible to write explicit formulae for the intervals 
using the matrix notation. We omit them here.
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Reading R-Output
> summary(fit.orig)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept) 1496.4915   572.7205   2.613  0.01224 *  
JanTemp -2.4479     0.8808  -2.779  0.00798 ** 
...
Dens          11.9490    16.1836   0.738  0.46423    
NonWhite 326.6757    62.9092   5.193 5.09e-06 ***
WhiteCollar -146.3477   112.5510  -1.300  0.20028    
...
---
Residual standard error: 34.23 on 44 degrees of freedom
Multiple R-squared: 0.7719, Adjusted R-squared: 0.6994 
F-statistic: 10.64 on 14 and 44 DF,  p-value: 6.508e-10

Note: due to space constraints, this is only a part of the output!
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Versatility of Multiple Linear Regression
Despite that we are using linear models only, we have a versatile 
and powerful tool. While the response is always a continuous 
variable, different predictor types are allowed:

• Continuous Predictors 
Default case, e.g. temperature, distance, pH-value, …

• Transformed Predictors
For example: 

• Powers
We can also use:

• Categorical Predictors
Often used: sex, day of week, political party, …

( ), ( ), ( ),...log x sqrt x arcsin x

1 2 3, , , ...x x x
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First-Aid Transformations
This is a guideline as to how the variables in a regression can 
and should be transformed. The recommendation is to always 
apply these except if there are strong reasons against. From a 
practical viewpoint, they stabilize variance and improve the fit.

Absolute values, concentrations, right-skewed variables:
log-transformation:                    and also 

Count variables:
square-root transformation:             , maybe also  

Proportions:
arcsine transformation:

log( )x x 
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First-Aid Transformations
Example: Zurich Airport Data

Both the predictor ATM and the response Pax are count variables 
that only take positive values. They are due to a FAT. Because of 
the easier interpretation, we prefer to take logarithms here.

The R code is as follows:

> fit.log <- lm(log(Pax) ~ log(ATM), data=...)

The fit is no longer a straight line but a curve. And there is no 
longer a linear increase in Pax with rising ATM, but...

log( )ATM ATM  log( )Pax Pax 
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Straight Line vs. log-log Fit
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Comparison of Residuals vs. Predictor
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Conclusions for Zurich Airport Data
The assumptions on the error are better fulfilled and we obtain 
smaller residuals after the log-log transformation. Thus, this is
the more accurate model.

> lm(log(Pax) ~ log(ATM), data=...)

(Intercept)     log(ATM)  
-2.116        1.655

The relation is:                                 , resp.

Thus, if ATM increases by 1%, then Pax increases by 1.655%. 
This is due to bigger airplanes used and higher seat load factor 
during busy months.   

1.655exp( 2.116)y x   1.6550.120Pax ATM 
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FAT for the Mortality Data
The following variable transformations are recommended: 
> str(mortality)
'data.frame': 59 obs. of  16 variables:
$ Mortality  : num 922 998 962 ...
$ JanTemp : num 27 23 29 45 ...
$ JulyTemp : num 71 72 74 79 ...
$ RelHum : num 59 57 54 56 ...
$ Rain       : num 36 35 44 47 ...
$ Educ : num 11.4 11 9.8 ...
$ Dens       : num 3243 4281   ...
$ NonWhite : num 8.8 3.5 0.8 ...
$ WhiteCollar: num 42.6 50.7   ...
$ Pop        : num 660328 83588...
$ House      : num 3.34 3.14   ...
$ Income     : num 29560 31458 ...
$ HC         : num 21 8 6 18   ...
$ NOx : num 15 10 6 8   ...
$ SO2        : num 59 39 33 24 ...
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The Effect of Variable Transformations
Under non-linear variable transformations (i.e. log, sqrt or arcsin), 
most results change: coefficients, fitted values, tests & p-values.

> anova(fit.trsf.big, fit.trsf.small)

Analysis of Variance Table

Model 1: Mortality ~ JanTemp + JulyTemp + RelHum + Rain +
Educ + Dens + NonWhite + WhiteCollar + Pop +
House + Income + log(HC) + log(NOx) + log(SO2)

Model 2: Mortality ~ JanTemp + JulyTemp + RelHum + Rain +
Educ + Dens + NonWhite + WhiteCollar + Pop +
House + Income

Res.Df RSS Df Sum of Sq F Pr(>F)  
1     45 53917                              
2     48 65672 -3    -11755 3.2703 0.02967 *
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Linear Variable Transformations
Example: American Automobile Dataset
> head(mtcars, 10)

mpg cyl disp hp drat    wt qsec vs am
Mazda RX4         21.0   6 160.0 110 3.90 2.620 16.46  0  1
Mazda RX4 Wag     21.0   6 160.0 110 3.90 2.875 17.02  0  1
Datsun 710        22.8   4 108.0  93 3.85 2.320 18.61  1  1
Hornet 4 Drive    21.4   6 258.0 110 3.08 3.215 19.44  1  0
Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0
Valiant           18.1   6 225.0 105 2.76 3.460 20.22  1  0
Duster 360        14.3   8 360.0 245 3.21 3.570 15.84  0  0
Merc 240D         24.4   4 146.7  62 3.69 3.190 20.00  1  0
Merc 230          22.8   4 140.8  95 3.92 3.150 22.90  1  0
Merc 280          19.2   6 167.6 123 3.92 3.440 18.30  1  0

 Fuel consumption is measured in mpg instead of l/100km and 
displacement in cubic inches but not ccm. Can we convert?



20Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2012 – Week 06

Linear Variable Transformations
Changing units, i.e. all linear variable transformations are allowed. 
While the regression coefficients change, fitted values, test stats, 
p-values and model diagnostics remain the very same!

Since the results are easier to read, it has proven very important 
to use well-readable and natural units for regression analysis

mile    <- 1.609344
gallon  <- 3.78541178
l.100km <- 100/(dat$mpg*mile/gallon)

inch    <- 2.54
ccm <- dat$disp*(2.54^3)
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Categorical Predictors
The canonical case in linear regression are continuous predictor 
variables such as for example:

 temperature, distance, pressure, velocity, ...

While in linear regression, we cannot have categorical response, it 
is perfectly valid to have categorical predictors:

 yes/no, sex (m/f), type (a/b/c), shift (day/evening/night), ...

Such categorical predictors are often also called factor variables. 
In a linear regression, each level of such a variable is encoded by 
a dummy variable, so that            degrees of freedom are spent. ( 1)
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Example: Binary Categorical Variable
The lathe (in German: Drehbank) dataset:

- lifetime of a cutting tool in a turning machine

- speed of the machine in rpm

- tool type A or B

Dummy variable encoding:

y

1x

2x

2

0
1

tool type A
x

tool type B
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Interpretation of the Model
 see blackboard…

> summary(lm(hours ~ rpm + tool, data = lathe))

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 36.98560    3.51038  10.536 7.16e-09 ***

rpm         -0.02661    0.00452  -5.887 1.79e-05 ***

toolB 15.00425    1.35967  11.035 3.59e-09 ***

---

Residual standard error: 3.039 on 17 degrees of freedom

Multiple R-squared: 0.9003,  Adjusted R-squared: 0.8886 

F-statistic: 76.75 on 2 and 17 DF,   p-value: 3.086e-09
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The Dummy Variable Fit
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A Model with Interactions
Question: do the slopes need to be identical?

 with the appropriate model, the answer is no!

 see blackboard for model interpretation…
0 1 1 2 2 3 1 2Y x x x x E       
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Different Slopes for the Regression Lines
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Summary Output
> summary(lm(hours ~ rpm * tool, data = lathe))

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 32.774760   4.633472   7.073 2.63e-06 ***

rpm         -0.020970   0.006074  -3.452  0.00328 ** 

toolB 23.970593   6.768973   3.541  0.00272 ** 

rpm:toolB -0.011944   0.008842  -1.351  0.19553    

---

Residual standard error: 2.968 on 16 degrees of freedom

Multiple R-squared: 0.9105,  Adjusted R-squared: 0.8937 

F-statistic: 54.25 on 3 and 16 DF,  p-value: 1.319e-08



28Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2012 – Week 06

How Complex the Model Needs to Be?
Question 1: do we need different slopes for the two lines?

against

 no, see individual test for the interaction term on previous slide!

Question 2: is there any difference altogether?

against

 this is a hierarchical model comparison
 we try to exclude interaction and dummy variable together

R offers convenient functionality for this test, see next slide!

0 3: 0H   3: 0AH  

0 2 3: 0H    2 3: 0 / 0AH and or  
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Testing the Tool Type Variable
Hierarchical model comparison with anova():

> fit.small <- lm(hours ~ rpm, data=lathe)

> fit.big <- lm(hours ~ rpm * tool, data=lathe)

> anova(fit.small, fit.big)

Model 1: hours ~ rpm

Model 2: hours ~ rpm * tool

Res.Df RSS Df Sum of Sq F    Pr(>F)    

1     18 1282.08                                  

2     16  140.98  2    1141.1 64.755 2.137e-08 ***

 The bigger model, i.e. making a distinction between the tools, 
is significantly better. The main effect is enough, though.
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Categorical Input with More Than 2 Levels
There are now 3 tool types A, B, C:

Main effect model: 

With interactions:

2 3

0 0
1 0
0 1

x x
for observations of type A
for observations of type B
for observations of type C

0 1 1 2 2 3 3y x x x E       

0 1 1 2 2 3 3 4 1 2 5 1 3y x x x x x x x E           
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Three Types of Cutting Tools
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> summary(lm(hours ~ rpm * tool, data = abc.lathe)

Coefficients:Estimate Std. Error t value Pr(>|t|)    
(Intercept) 32.774760   4.496024   7.290 1.57e-07 ***
rpm         -0.020970   0.005894  -3.558  0.00160 ** 
toolB 23.970593   6.568177   3.650  0.00127 ** 
toolC 3.803941   7.334477   0.519  0.60876    
rpm:toolB -0.011944   0.008579  -1.392  0.17664    
rpm:toolC 0.012751   0.008984   1.419  0.16869    
---
Residual standard error: 2.88 on 24 degrees of freedom
Multiple R-squared: 0.8906, Adjusted R-squared: 0.8678 
F-statistic: 39.08 on 5 and 24 DF,  p-value: 9.064e-11

This summary is of limited use for deciding about model
complexity. We require hierarchical model comparisons!
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Inference with Categorical Predictors
Do not perform individual hypothesis tests on factors
that have more than 2 levels, they are meaningless!

Question 1: do we have different slopes?

against

Question 2: is there any difference altogether?

against

 Again, R provides convenient functionality: anova()

0 4 5: 0 0H and   4 5: 0 / 0AH and or  

0 2 3 4 5: 0H        2 3 4 5: , , , 0AH any of     
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Anova Output
> anova(fit.abc)

Analysis of Variance Table
Df Sum Sq Mean Sq F value    Pr(>F)    

rpm        1  139.08  139.08 16.7641  0.000415 ***
tool       2 1422.47  711.23 85.7321 1.174e-11 ***
rpm:tool 2   59.69   29.84  3.5974  0.043009 *  
Residuals 24  199.10    8.30   

 The interaction term is weakly significant. Thus, there is some 
weak evidence for the necessity of different slopes.

 The p-value for the tool variable includes omitting interaction 
and main effect. Being strongly significant, we have strong 
evidence that tool type distinction is needed. 
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Fazit über Vielfalt
Modellbeispiel zeigen

Y = x + x2 + log(x) + x1*x2 etc... (siehe vorne)

Wie entscheiden:

- Trsf. First Aid oder Modelldiagnostik

- Interaktionen: Testen/Variablenselektion oder Modelldiagnostik

Das Erkennen von Modelldefiziten und 
Verbesserungsmöglichkeiten unterscheidet den Profi vom
Anfänger. Viele Tools stehen zur Verfügung. Wir lernen sie
kennen.

log( )x x 

x x 

 1sinx x 

log( )y y 

y y 


