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What is Regression?
The answer to an everyday question: 
How does a target variable of special interest depend on
several other (explanatory) factors or causes. 

Examples:
•  growth of plants, depends on fertilizer, soil quality, …
•  apartment rents, depends on size, location, furnishment, … 
•  car insurance premium, depends on age, sex, nationality, …

Regression:
•  quantitatively describes relation between predictors and target
•  high importance, most widely used statistical methodology
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Multiple Linear Regression
We use linear modeling for a multiple predictor regression:

• there are now      predictors
• the problem cannot be visualized in a scatterplot
• there will be      observations of response and predictors
• goal: estimating the coefficients                     from the data 

IMPORTANT: simple linear regression of the response on 
each of the predictors does not equal multiple regression, 
where all predictors are used simultanously. 
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Assumptions on the Error Term
The assumptions are identical to simple linear regression.

- , i.e. the hyper plane is the correct fit
- , constant scatter for the error term
- , uncorrelated errors
- , the errors are normally distributed

Note:As in simple linear regression, we do not require 
Gaussian distribution for OLS estimation and certain 
optimality results, i.e. the Gauss-Markov theorem.

But: All tests and confidence intervals rely on the Gaussian, 
and there are better estimates for non-normal data 
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Don‘t Do Many Simple Regressions
Doing many simple linear regressions is not equivalent to 
multiple linear regression. Check the example

We have                                  , a perfect fit.

Thus, all residuals are 0 and             .

 But what is the result from simple linear regressions?  

x1 0 1 2 3 0 1 2 3
x2 -1 0 1 2 1 2 3 4
yy 1 2 3 4 -1 0 1 2

1 2ˆ 2i i i iY y x x  
2ˆ 0E 
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Don‘t Do Many Simple Regressions
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An Example
Researchers at General Motors collected data on 60 US 
Standard Metropolitan Statistical Areas (SMSAs) in a study of 
whether air pollution contributes to mortality. 

http://lib.stat.cmu.edu/DASL/Stories/AirPollutionandMortality.html

City Mortality JanTemp JulTemp RelHum Rain Educ Dens NonWh WhCollar Pop House Income HC NOx SO2

Akron 921.87 27 71 59 36 11.4 3243 8.8 42.6 660328 3.34 29560 21 15 59

Albany 997.87 23 72 57 35 11 4281 3.5 50.7 835880 3.14 31458 8 10 39

Allentown 962.35 29 74 54 44 9.8 4260 0.8 39.4 635481 3.21 31856 6 6 33

Atlanta 982.29 45 79 56 47 11.1 3125 27.1 50.2 2138231 3.41 32452 18 8 24

Baltimore 1071.29 35 77 55 43 9.6 6441 24.4 43.7 2199531 3.44 32368 43 38 206

Birmingham 1030.38 45 80 54 53 10.2 3325 38.5 43.1 883946 3.45 27835 30 32 72
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Estimated Coefficients
Simple Regressions:
log(SO2):

NonWhite:

Rain:

Multiple Regression:
> lm(Mortality ~ log(SO2) + NonWhite + Rain, data=mortality)
> Coefficients:
> (Intercept)     log(SO2)     NonWhite Rain  

773.020       17.502        3.649        1.763  

The regression coefficient      is the increase in the response,
if the predictor      increases by 1 unit, but all other predictors 
remain unchanged.

2ˆ 886.34 16.86 log( )y SO  
ˆ 887.90 4.49y NonWhite  
ˆ 851.22 2.34y Rain  
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Least Squares Algorithm
The paradigm is to determine the regression coefficients such 
that the sum of squared residuals is minimal. This amounts to 
minimizing the quality function:

We can take partial derivatives with respect to
and so obtain a linear equation system with             unknowns 
and the same number of equations. 

 Mostly (but not always...), there is a unique solution.
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Matrix Notation
In matrix notation, the multiple linear regression model can be 
written as:

The elements in this equation are as follows:

 see blackboard…

Y X E 

Marcel Dettling, Zurich University of Applied Sciences



11

Applied Statistical Regression
AS 2012 – Week 05

Normal Equations and Their Solutions
The least squares approach leads to the normal equations, 
which are of the following form:

• Unique solution if and only if     has full rank
• Predictor variables need to be linearly independent

• If     has not full rank, the model is “badly formulated”
• Design improvement mandatory!!!

• Necessary (not sufficient) condition:
• Do not over-parametrize your regression!
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Properties of the Estimates
Gauss-Markov-Theorem:

The regression coefficients are unbiased estimates, and they 
fulfill the optimality condition of minimal variance among all 
linear, unbiased estimators (BLUE).

-

-

- (note: degrees of freedom!)
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Hat Matrix Notation
The fitted values are:

The matrix  is called hat matrix, because “it puts a hat on the 
Y’s”, i.e. transforms the observed values into fitted values. We 
can also use this matrix for computing the residuals:

Moments of these estimates:

, 

, 
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If the Errors are Gaussian…
While all of the above statements hold for arbitrary error 
distribution, we obtain some more, very useful properties by 
assuming i.i.d. Gaussian errors:

-

-

-

What to do if the errors are non-Gaussian?
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Benefits of Linear Regression
•   Inference on the relation between and

The goal is to understand if and how strongly the response
variable depends on the predictor. There are performance
indicators as well as statistical tests adressing the issue.

•   Prediction of (future) observations

The regression equation can be employed to predict
the response value for any given predictor configuration.

However, this mostly will not work well for extrapolation!
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: The Coefficient of Determination 
The coefficient of determination      tells which portion of the
total variation is accounted for by the regression hyperplane.

 For multiple linear regression, visualization is impossible!
 The number of predictor used should be taken into account.

2R
2R
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Coefficient of Determination
The coefficient of determination, also called multiple R-
squared, is aimed at describing the goodness-of-fit of the 
multiple linear regression model:

It shows the proportion of the total variance which has been 
explained by the predictors. The extreme cases 0 and 1 
mean:…
Marcel Dettling, Zurich University of Applied Sciences

2

2 1

2

1

ˆ( )
1 [0,1]

( )

n

i i
i

n

i
i

y y
R

y y






  









18

Applied Statistical Regression
AS 2012 – Week 05

Adjusted Coefficient of Determination
If we add more and more predictor variables to the model, R-
squared will always increase, and never decreases

Is that a realistic goodness-of-fit measure?
 NO, we better adjust for the number of predictors!

The adjusted coefficient of determination is defined as:
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Confidence Interval for Coefficient
We can give a 95%-CI for the regression coefficient      .
It tells which values, besides the point estimate     , are 
plausible too. 

Note: This uncertainty comes from sampling effects

95%-VI for      :                               

In R: > fit <- lm(Mortality ~ ., data=mt)

> confint(fit, "Educ")
2.5 %   97.5 %

Educ -31.03177 4.261925

j
ˆ

j

ˆ0.975; ( 1)
ˆ ˆ

j
j n pqt


   j

j



20Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2012 – Week 05

Testing the Coefficient
There is a statistical hypothesis test which can be used to check 
whether      is significantly different from zero, or different from 
any other arbitrary value    . The null hypothesis is:

, resp. 

One usually tests two-sided on the 95%-level. The alternative is:

, resp.

As a test statistic, we use: 

, resp.                 , both follow a           distribution. 
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Reading R-Output
> summary(fit.orig)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept) 1496.4915   572.7205   2.613  0.01224 *  
JanTemp -2.4479     0.8808  -2.779  0.00798 ** 
...
Dens          11.9490    16.1836   0.738  0.46423    
NonWhite 326.6757    62.9092   5.193 5.09e-06 ***
WhiteCollar -146.3477   112.5510  -1.300  0.20028    
...
---
Residual standard error: 34.23 on 44 degrees of freedom
Multiple R-squared: 0.7719, Adjusted R-squared: 0.6994 
F-statistic: 10.64 on 14 and 44 DF,  p-value: 6.508e-10

Note: due to space constraints, this is only a part of the output!
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Individual Parameter Tests
These tests quantify the effect of the predictor on the 
response after having subtracted the linear effect of all other 
predictor variables on    . 

Be careful, because of:

a) The multiple testing problem: when doing many tests, the 
total type II error increases. By how much? 
 See blackboard...

b) It can happen that all individual tests do not reject the null 
hypothesis, although some predictors have a significant 
effect on the response. Reason: correlated predictors!
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Individual Parameter Tests
These tests quantify the effect of the predictor on the 
response after having subtracted the linear effect of all other 
predictor variables on    . 

Be careful, because of:

c) The p-values of the individual hypothesis tests are based 
on the assumption that the other predictors remain in the 
model and do not change. Therefore, you must not drop 
more than one single non-significant predictor at a time!

Solution: drop one, re-evaluate the model, drop one, ...
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Simple Variable Selection
Goal: Dropping all predictors from the regression model which 

are not necessary, i.e. do not show a significant impact 
on the response. 

How: In a step-by-step manner, the least significant predictor
is dropped from the model, as long as its p-value still 
exceeds the value of 0.05.

In R: > fit <- update(fit, . ~ . - RelHum) 
> summary(fit)

 Exercise: try do to this for the Mortality Data

Marcel Dettling, Zurich University of Applied Sciences
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Comparing Hierachical Models
Idea: Correctly comparing two multiple linear regression models 

when the smaller has >1 predictor less than the bigger.

Where and why do we need this?
- for the 3 pollution variables in the mortality data.
- soon also for the so-called factor/dummy variables.

Idea: We compare the residual sum of squares (RSS):

Big model:
Small model:

The big model must contain all the predictors from the small 
model, else they are not hierarchical and the test does not apply.
Marcel Dettling, Zurich University of Applied Sciences
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Comparing Hierarchical Models
Null hypothesis:

, versus the alternative 
hypothesis that at least one                      

The test compares the RSS of the big and the small model: 

 If the    -value is small (              ), there is no evidence against 
the null, and we can work well with the smaller model.

 The p-value answers: is the big model significantly better?
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Density Function of the F-distribution
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Comparing Hierachical Models in R
> fit.big <- lm(Mortality ~ ., data=mt)
> fit.small <- update(fit.big, .~.-HC-NOx-SO2)

> anova(fit.big, fit.small)

Analysis of Variance Table

Model 1: Mortality ~ JanTemp + JulyTemp + RelHum + Rain +
Educ + Dens + NonWhite + WhiteCollar + Pop +
House + Income + HC + NOx + SO2

Model 2: Mortality ~ JanTemp + JulyTemp + RelHum + Rain +
Educ + Dens + NonWhite + WhiteCollar + Pop +
House + Income

Res.Df RSS Df Sum of Sq F Pr(>F)  
1     44 51543                             
2     47 61244 -3   -9700.8 2.7604 0.0533 .
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The Global F-Test
Idea: is there any relation between response and predictors?

This is another hierachical model comparison. The full model is 
tested against a small model with only the intercept, but without 
any predictors.

We are testing the null                                              against the 
alternative                      for at least one predictor     . This test is 
again based on comparing the RSS:

 Test statistic and p-value are shown in the R summary!

0 1 2: ... 0pH      
: 0A jH   jx

, ( 1)
( 1) ~Small Big

p n p
Big

RSS RSSn pF F
p RSS  

 
 



30Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2012 – Week 05

Reading R-Output
> summary(fit.orig)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept) 1496.4915   572.7205   2.613  0.01224 *  
JanTemp -2.4479     0.8808  -2.779  0.00798 ** 
...
Dens          11.9490    16.1836   0.738  0.46423    
NonWhite 326.6757    62.9092   5.193 5.09e-06 ***
WhiteCollar -146.3477   112.5510  -1.300  0.20028    
...
---
Residual standard error: 34.23 on 44 degrees of freedom
Multiple R-squared: 0.7719, Adjusted R-squared: 0.6994 
F-statistic: 10.64 on 14 and 44 DF,  p-value: 6.508e-10

Note: due to space constraints, this is only a part of the output!
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Density Function of the F-distribution
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Prediction
The regression equation can be employed to predict 
the response value for any given predictor configuration.

Note: 
This can be a predictor configuration that was not part of the 
original data. For example a (new) city, for which only the 
predictors are known, but the mortality is not. 

Be careful:
Only interpolation, i.e. prediction within the range of observed 
y-values works well, extrapolation yields non-reliable results.
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Prediction in R
We can use the regression fit for predicting new observations. 
The syntax is as follows

> fit.big <- lm(Mortality ~ ., data=mt)
> dat <- data.frame(JanTemp=..., ...) 
> predict(fit.big, newdata=dat)
1 932.488

The x-values need to be provided in a data frame. The variable 
(column) names need to be identical to the predictor names. Of 
course, all predictors need to be present.

Then, it is simply applying the predict()-procedure.
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Confidence- and Prediction Interval
The confidence interval for the fitted value and the prediction 
interval for future observation also exist in multiple regression.

a) 95%-CI for the fitted value
> predict(fit, newdata=dat, "confidence")

b) 95%-PI for a future observation    :
> predict(fit, newdata=dat, "prediction")

• The visualization of these intervals is no longer possible 
in the case of multiple regression

• It is possible to write explicit formulae for the intervals 
using the matrix notation. We omit them here.

[ | ]E y x
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Reading R-Output
> summary(fit.orig)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept) 1496.4915   572.7205   2.613  0.01224 *  
JanTemp -2.4479     0.8808  -2.779  0.00798 ** 
...
Dens          11.9490    16.1836   0.738  0.46423    
NonWhite 326.6757    62.9092   5.193 5.09e-06 ***
WhiteCollar -146.3477   112.5510  -1.300  0.20028    
...
---
Residual standard error: 34.23 on 44 degrees of freedom
Multiple R-squared: 0.7719, Adjusted R-squared: 0.6994 
F-statistic: 10.64 on 14 and 44 DF,  p-value: 6.508e-10

Note: due to space constraints, this is only a part of the output!


