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What is Regression?
The answer to an everyday question: 
How does a target variable of special interest depend on
several other (explanatory) factors or causes. 

Examples:
•  growth of plants, depends on fertilizer, soil quality, …
•  apartment rents, depends on size, location, furnishment, … 
•  car insurance premium, depends on age, sex, nationality, …

Regression:
•  quantitatively describes relation between predictors and target
•  high importance, most widely used statistical methodology
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What is Regression?
Example: Fresh Water Tank on                                Planes

• Earlier: it was impossible to predict the amount of fresh water 
needed, the tank was always filled to 100% at Zurich airport. 

• Goal: Minimizing the amount of fresh water that is carried. 
This lowers the weight, and thus fuel consumption and cost. 

• Task: Modelling the relation between fresh water consumption 
and # of passengers, flight duration, daytime, destination, …
Furthermore, quantifying what is needed as a reserve.

• Method: Multiple linear regression model
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Regression Mathematics
 See blackboard...
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Versatility of Linear Modeling
“Only” linear models: is that a problem? NO
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Goals with Linear Modeling
To understand the causal relation, doing inference

•  Does the fertilizer positively affect plant growth?
•  Regression is a tool to give an answer on this
•  However, showing causality is a different matter

Target value prediction for new configurations

•  What are the expected claims for auto insurance?
•  Regression analysis formalizes “prior experience”
•  It also provides an idea on the uncertainty of the prediction
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Interpretation of Linear Models
• Linear models are mathematical formulae that formalize

the relation between a target variable and a number of
predictors.

• This formalization involves a deterministic / systematic 
part and an error term which stands for the random, non-
systematic part.

• Usually, such linear models are a simplification of reality
and are descriptive, but not causal. 

Example: Automobile insurance…
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Simple Regression
• Simple = There is only 1 predictor variable

• Advantage: easy visualization in a scatterplot

• Amounts to fitting a straight line or a curve

• Mathematically easier than multiple predictors

 an ideal start

We will do non-parametric curve fitting first, then turn
our attention to linear modelling. Later we do multiple 
regression, with the main focus on linear modelling.
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Example: Airline Passengers
Each month, Zurich Airport publishes the number of air traffic
movements and airline passengers. We study their relation.  
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Example: Airline Passengers

Month Pax ATM

2010-12 1‘730‘629 22‘666

2010-11 1‘772‘821 22‘579

2010-10 2‘238‘314 24‘234

2010-09 2‘139‘404 24‘172

2010-08 2‘230‘150 24‘377

... ... ...
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Flughafen Zürich: Pax vs. ATM
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Smoothing
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Flughafen Zürich: Pax vs. ATMWe may use an arbitrary
smooth function for
capturing the relation bet-
ween Pax and ATM. 

• It should fit well, but 
not follow the data too
closely.

• The question is how
the line/function are
obtained.

( )f 
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Linear Modeling
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Flughafen Zürich: Pax vs. ATMA straight line represents
the systematic relation
between Pax and ATM.

• Only appropriate if the
true relation is indeed
a straight line

• The question is how
the line/function are
obtained.
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Smoothing vs. Linear Modeling
Advantages and disadvantages of smoothing:
+ Flexibility
+ No assumptions are made
- Functional form remains unknown
- Danger of overfitting

Advantages and disadvantages of linear modelling:
+ Formal inference on the relation is possible
+ Better efficiency, i.e. less data required
- Only reasonable if the relation is linear
- Might falsely imply causality
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Smoothing
Our goal is visualizing the relation between the / response
variable Pax and the / predictor variable ATM.

 we are not after a functional description of

Since there is no parametric function that describes the response
vs. predictor relation, smoothing is also termed non-parametric
regression analysis.

Method/Idea: "Running Mean"
- take a window of x-values
- compute the mean of the y-values within the window
- this is an estimate for the function value at the window center

( )f 

Y
x
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Running Mean: Example
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Running Mean: Beispiel
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Running Mean: Mathematics
RunningMean(x) = Mean of y-values over a window with

width around . 

The estimate for , denoted as , is defined as follows:

, 

The weights are defined as , 
and is the window width.  
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Running Mean: R-Implementation
• As an introductory exercise, it is instructive to code a function

that computes and visualizes the running mean.
Arguments: xx=   x values

yy=   y values
width= window width
steps= # of points computed
plot= should the result be plotted?

• Alternatively, one can also use function ksmooth()with
default settings. The window width can be adjusted by
using argument bandwidth=.

We will now study the running mean fit...
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Running Mean: Unique-Data

19000 20000 21000 22000 23000 24000 2500014
00

00
0

18
00

00
0

22
00

00
0

ATM

P
ax

Running Mean: Width=1000, Steps=10



21Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2012 – Week 01

Running Mean: Unique-Data
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Running Mean: Unique-Data
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Running Mean: Drawbacks
• The finer grained the evaluation points are, the less smooth 

the fitted function turns out to be. This is unwanted. 
Reason: datapoints are "lost" abruptly.

• For large window width, we loose a lot of information on the
boundaries. For small windows however, we may have too
few points withing the window, and thus instability. 

 There are much better smoothing algorithms!

We will introduce:
a) a Gaussian Kernel Smoother, and
b) the robust LOESS-Smoother
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Gaussian Kernel Smoother
KernelSmoother(x) = Gaussian bell curve weighted average

of y-values around x. 

The estimate for , denoted as , is defined as:

, 

The weights are defined as:                                    , i.e.
the window is infinitely wide,
but distant observation obtain little weight.
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Gaussian Kernel Smoother: Idea
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Gaussian Kernel Smoother: Unique-Data
> ks.gauss <- ksmooth(ATM, Pax, kernel="normal", band=500)
> plot(ATM, Pax, xlab="ATM", ylab="Pax", pch=20)
> lines(ks.gauss$x, ks.gauss$y, col="darkgreen", lwd=1.5)
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LOESS-Smoother
The LOESS-Smoother is better, more flexible and more robust 
than the Gaussian Kernel Smoother. It should be prefered! 

It works as follows:

1) Choose a window of fixed width

2) For this window, a straight line (or a parabola) is fitted to 
the datapoints within, using a robust fitting method. 

3) Predicted value at window center := fitted value

4) Slide the window over the entire x-range
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LOESS-Smoother: Idea
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LOESS-Smoother: Unique-Data
> fit <- loess(Pax~ATM, data=unique2010)
> new.x <- seq(min(ATM), max(ATM), length=100)
> new.y <- predict(fit, newdata=data.frame(ATM=new.x))
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Choice of the Smoothing Parameter
 Is usually done by try and error eyeballing.
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Choice of the Smoothing Parameter
 Is usually done by try and error eyeballing.
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Choice of the Smoothing Parameter
 Is usually done by try and error eyeballing.
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Simple Linear Regression
The more air traffic movements, the more passengers there are. 
The relation seems to be linear, which is of course also the
mathematically most simple way of describing the relation.

, resp. 

Name/meaning of the two "Intercept"
parameters in the equation:                  "Slope"

Fitting a straight line into a 2-dimensional scatter plot is known
as simple linear regression. This is because: 
•   there is just one single predictor variable ("simple").
•   the relation is linear in the parameters ("linear").

1( ) of x x  

0 
1 

0 1Pax ATM   
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Model, Data & Random Errors
No we are bringing the data into play. The regression line will not 
run through all the data points. Thus, there are random errors: 

,  for all 

Meaning of variables/parameters:
is the response variable (Pax) of observation .
is the predictor variable (ATM) of observation .
are the regression coefficients. They are unknown
previously, and need to be estimated from the data.
is the residual or error, i.e. the random difference bet-
ween observation and regression line.
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Least Squares Fitting
 http://hspm.sph.sc.edu/courses/J716/demos/LeastSquares/LeastSquaresDemo.html

We need to fit a straight
line that fits the data well.

Many possible solutions
exist, some are good, 
some are worse.

Our paradigm is to fit the
line such that the squared
errors are minimal.
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Least Squares: Mathematics
The paradigm in verbatim...

Given a set of data points                    , the goal is to fit the 
regression line such that the sum of squared differences  
between observed value      and regression line is minimal. 
The function 

measures, how well the regression line, defined by           , fits 
the data. The goal is to minimize the function.

Solution:  see next slide...
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Solution Idea: Partial Derivatives
• We are taking partial derivatives on the function with

respect to both arguments and . As we are after the
minimum of the function, we set them to zero:

and

• This results in a linear equation system, which (here) has two
unknowns , but also two equations. These are also 
known under the name normal equations. 

• The solution for can be written explicitly as a function of
the data pairs , see next slide...
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Least Squares: Solution
According to the least squares paradigm, the best fitting
regression line is, i.e. the optimal coefficients are: 

und 

• For a given set of data points , we can determine
the solution with a pocket calculator (...or better, with R). 

• The solution for our example Pax vs. ATM:

 lm(Pax ~ ATM, data=airpax)
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Least Squares Regression Line
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Is This a Good Model for Predicting the
Pax Number from the ATM?
a) Beyond the range of observed data
Unknown, but most likely not...

b) Within the range of observed data
Yes, under the following conditions:
- the relation is in truth a straight line, i.e. 
- the scatter of the errors is constant, i.e. 
- the data are uncorrelated (from a representative sample)
- the errors are approximately normally distributed

 Fodder for thougt: 9/11, SARS, Eyjafjallajökull...?
Marcel Dettling, Zurich University of Applied Sciences

[ ] 0iE E 
2( )iVar E 
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Model Diagnostics
For assessing the quality of the regression line, we need to
(at least roughly) check whether the assumptions are met:

and                       can be reviewed by:[ ] 0iE E  2( )iVar E 

19000 21000 23000 25000

-1
e+

05
0e

+0
0

Residuals vs. ATM

ATM

R
es

id
ua

ls

1400000 1800000 2200000

-1
e+

05
0e

+0
0

Residuals vs. Fitted Values

Fitted Values

R
es

id
ua

ls



42

Applied Statistical Regression
AS 2012 – Week 01

Model Diagnostics
For assessing the quality of the regression line, we need to
(at least roughly) check whether the assumptions are met:
Gaussian distribution can be reviewed by:

We will revisit model diagnostics
again later in this course, where
it will be discussed more deeply.

"Residuals vs. Fitted" and the
"Normal Plot" will always stay at
the heart of model diagnostics.
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Why Least Squares?
History...

Within a few years (1801, 1805), the method was developed
independently by Gauss and Legendre. Both were after solving
applied problems in astronomy...
Source:  http://de.wikipedia.org/wiki/Methode_der_kleinsten_Quadrate

Carl Friedrich Gauss

Marcel Dettling, Zurich University of Applied Sciences

Adrien-Marie Legendre
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Why Least Squares?
Mathematics...

• Least Squares is simple in the sense that the solution is
known in closed form as a function of . 

• The line runs through the center of gravity

• The sum of residuals adds up to zero: 

• Some deeper mathematical optimality can be shown when
analyzing the large sample properties of the estimates
This is especially true under the assumption of normally
distributed errors .  

Marcel Dettling, Zurich University of Applied Sciences
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Gauss-Markov-Theorem
Mathematical optimality result for the Least Squares line.
It only holds if the following conditions are met:

- the relation is in truth a straight line, i.e. 
- the scatter of the errors is constant, i.e. 
- the errors are uncorrelated, i.e. 

Not yet required:
- the errors are normally distributed:

Gauss-Markov-Theorem:
- Least Squares yields the best linear unbiased estimates

[ ] 0iE E 
2( )iVar E 

( , ) 0,i jCov E E if i j 
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Properties of the Least Square Estimates
Under the conditions above, the estimates are unbiased: 

and 

The variances of the estimates are as follows:

and 

Precise estimates are obtained with:
- a large number of observations
- a good scatter in the predictor 
- an informative/useful predictor, making       small  
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