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Course Organization

Applied Statistical Regression — AS 2012

People:
Lecturer: Dr. Marcel Dettling (marcel.detting@zhaw,.ch)
C Chiri: N

(nowzohour@stat math ethz ch)
Alan Muro Jimenez (muro@stat math ethz ch)

Course Schedule:
All lectures will be held at HG D1.1, on Mondays from 8.15-9.00, resp. 9.15-10.00.
Week Date L/E Topics

01 17.09.2012
02 24.09.2012

Linear Modeling, Smoothing

03  01.10.2012 E/E Introduction to R

04  08.10.2012 Simple Regression, Variable Transfe

05  15.10.2012 UE Fitting Multiple Linear Regression Models
06
o7

=

=

22.10.2012 Inference for Multiple Linear Regressions

29.10.2012 E ( i

UL
UE
o8 05.11.2012 LU/L  Model Diagnostics: Residual Plots
09 1211.2012 UE Model Choice: Variable Selection
10 19.11.2012 UL Cross M i i
1 26.11.2012 UE Logistic and Binomial Regression
12 03.12.2012 UL Regression for Nominal and Ordinal response
13 10122012 UE Poisson Regression for Count Data
UL

14 17.12.2012 Advanced Topics

Exercise Schedule:

The exercises start on October 1, 2012 from 8.15 to 10.00 with an introduction fo the
mﬁsﬁwmﬂmpﬁum R. This takes place at the computer labs, the rooms will be

comr i by the via e-mail. Then, the exercise schedule is as follows:
Series Date Topic Hand-In Discussion
02 01.10.2012 Simple Regression 08.10.2012 15.10.2012
03 15102012 Multiple Regression 1 22102012 29.10.2012
04 29.10.2012 Multiple Regression 2 05.11.2012 12.11.2012
05 12.11.2012 Multipie Regression 3 19.11.2012  26.11.2012
06 26.11.2012 Logistic Regression 03.122012  10.12.2012
o7 10.12.2012 Count and Ordinal Data — 10122012

All exercises except the R introduction take place at HG E41 (group of Nowzohour) and
HG D1.1 (group of Jimenez). All students whose last name starts with letters A-K visit the
group of Nowzohour, whereas the ones with letters L-Z visit the Jimenez group.

The solved exercises should be handed in at the end of the lecture of the due date or

placed in the comesponding tray in HG J68 until 12.00am. Please note that only final
recapitulatory documents shall be handed in, but no R script files.

Marcel Dettling, Zurich University of Applied Sciences
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What is Regression?

The answer to an everyday guestion:
How does a target variable of special interest depend on
several other (explanatory) factors or causes.

Examples:

« growth of plants, depends on fertilizer, soil quality, ...

e apartment rents, depends on size, location, furnishment, ...
e car insurance premium, depends on age, sex, nationality, ...

Regression:
e quantitatively describes relation between predictors and target
* high importance, most widely used statistical methodology

Marcel Dettling, Zurich University of Applied Sciences
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What Is Regression?
Example: Fresh Water Tank on g edelweiss air Planes

e Earlier: it was impossible to predict the amount of fresh water
needed, the tank was always filled to 100% at Zurich airport.

« Goal: Minimizing the amount of fresh water that is carried.
This lowers the weight, and thus fuel consumption and cost.

« Task: Modelling the relation between fresh water consumption
and # of passengers, flight duration, daytime, destination, ...
Furthermore, quantifying what is needed as a reserve.

 Method: Multiple linear regression model

ich University of Applied Sciences
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Regression Mathematics
-> See blackboard...
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Versatility of Linear Modeling

“Only” linear models: is that a problem? > NO
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Goals with Linear Modeling
->To understand the causal relation, doing inference

* Does the fertilizer positively affect plant growth?
 Regression is a tool to give an answer on this
 However, showing causality is a different matter

—>Target value prediction for new configurations

« What are the expected claims for auto insurance?
e Regression analysis formalizes “prior experience”
e |t also provides an idea on the uncertainty of the prediction

arcel Dettling, Zurich University of Applied Sciences
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Interpretation of Linear Models

* Linear models are mathematical formulae that formalize
the relation between a target variable and a number of
predictors.

« This formalization involves a deterministic / systematic
part and an error term which stands for the random, non-
systematic part.

e Usually, such linear models are a simplification of reality
and are descriptive, but not causal.

Example: Automobile insurance...

Marcel Dettling, Zurich University of Applied Sciences
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Simple Regression

 Simple = There is only 1 predictor variable
 Advantage: easy visualization in a scatterplot
 Amounts to fitting a straight line or a curve
 Mathematically easier than multiple predictors
-> an ideal start

We will do non-parametric curve fitting first, then turn
our attention to linear modelling. Later we do multiple
regression, with the main focus on linear modelling.

Marcel Dettling, Zurich University of Applied Sciences
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Example: Airline Passengers

Each month, Zurich Airport publishes the number of air traffic
movements and airline passengers. We study their relation.
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Example: Airline Passengers

Month

2010-12

2010-11

2010-10

2010-09

2010-08
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Smoothing

We may use an arbitrary

smooth function f(:) for

capturing the relation bet-
ween Pax and ATM.

e |t should fit well, but
not follow the data too
closely.

e The guestion is how
the line/function are
obtained.

Marcel Dettling, Zurich University of Applied Sciences
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Linear Modeling

A straight line represents
the systematic relation
between Pax and ATM.

e Only appropriate if the
true relation is indeed &
a straight line

ax

 The question is how
the line/function are
obtained.

1400000 1600000 1800000 2000000 2200000

Marcel Dettling, Zurich University of Applied Sciences

Flughafen Zirich: Pax vs. ATM

I I I I I I I
19000 20000 21000 22000 23000 24000 25000

Flugbewegungen

14



Applied Statistical Regression
AS 2012 — Week 01

Smoothing vs. Linear Modeling

Advantages and disadvantages of smoothing:

+ Flexibility

+ NoO assumptions are made

- Functional form remains unknown
- Danger of overfitting

Advantages and disadvantages of linear modelling:

+ Formal inference on the relation is possible
+ Better efficiency, i.e. less data required

- Only reasonable if the relation is linear

- Might falsely imply causality

ich University of Applied Sciences

15



Applied Statistical Regression
AS 2012 — Week 01

Smoothing

Our goal is visualizing the relation between the Y / response
variable Pax and the X/ predictor variable ATM.

- we are not after a functional description of f ()

Since there is no parametric function that describes the response
vs. predictor relation, smoothing is also termed non-parametric
regression analysis.

Method/ldea: "Running Mean"

- take a window of x-values

- compute the mean of the y-values within the window

- this Is an estimate for the function value at the window center

Marcel Dettling, Zurich University of Applied Sciences
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Running Mean: Example

Running Mean: Beispiel
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Running Mean: Mathematics

RunningMean(x) = Mean of y-values over a window with
width +4 /2 around X.

The estimate for f(:), denoted as fﬁ (-), Is defined as follows:

The weights are defined as W, =
and A is the window width.

1 falls|x—x, [<A/2
sonst

Marcel Dettling, Zurich University of Applied Sciences 18
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Running Mean: R-Implementation

« As an introductory exercise, it is instructive to code a function
that computes and visualizes the running mean.

Arguments: XX=
YY=

width=
steps=

plot=

X values

y values

window width

# of points computed

should the result be plotted?

« Alternatively, one can also use function ksmooth()with
default settings. The window width can be adjusted by
using argument bandwidth=.

- We will now study the running mean fit...

ling, Zurich University of Applied Sciences
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Running Mean: Unigue-Data

Running Mean: Width=1000, Steps=10
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Running Mean: Unigue-Data

Running Mean: Width=1000, Steps=100
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Running Mean: Unigue-Data

Running Mean: Width=1000, Steps=1000
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Running Mean: Drawbacks

« The finer grained the evaluation points are, the less smooth
the fitted function turns out to be. This is unwanted.
Reason: datapoints are "lost" abruptly.

* For large window width, we loose a lot of information on the
boundaries. For small windows however, we may have too
few points withing the window, and thus instabllity.

- There are much better smoothing algorithms!

We will introduce:
a) a Gaussian Kernel Smoother, and
b) the robust LOESS-Smoother

ich University of Applied Sciences
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Gaussian Kernel Smoother

KernelSmoother(x) = Gaussian bell curve weighted average
of y-values around x.

The estimate for f(-), denoted as fAl (-) Is defined as:

J= 2
: : (X - Xj) :
The weights are defined as: W; =exp , 1.e.
the window is infinitely wide, A

but distant observation obtain little weight.

Marcel Dettling, Zurich University of Applied Sciences
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Gaussian Kernel Smoother:
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Gaussian Kernel Smoother: Unique-Data

> ks.gauss <- ksmooth(ATM, Pax, kernel="normal', band=500)
> plot(ATM, Pax, xlab="ATM", ylab="Pax', pch=20)
> lines(ks.gauss$x, ks.gauss$y, col="'darkgreen', lwd=1.5)

Gauss'scher Kernel Smoother, 1=500
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LOESS-Smoother

The LOESS-Smoother is better, more flexible and more robust
than the Gaussian Kernel Smoother. It should be prefered!

It works as follows:
1) Choose a window of fixed width

2) For this window, a straight line (or a parabola) is fitted to
the datapoints within, using a robust fitting method.

3) Predicted value at window center = fitted value

4) Slide the window over the entire x-range
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LOESS-Smoother: Idea
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LOESS-Smoother: Unigue-Data

> fit <- loess(Pax~ATM, data=unique2010)
> new.x <- seqg(min(ATM), max(ATM), length=100)
> new.y <- predict(fit, newdata=data.frame(ATM=new.Xx))

Loess-Glatter: Default-Einstellung
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Choice of the Smoothing Parameter

- Is usually done by try and error eyeballing.

Loess-Glatter: span=0.2
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Choice of the Smoothing Parameter

- Is usually done by try and error eyeballing.

Loess-Glatter: span=0.3
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Choice of the Smoothing Parameter

- Is usually done by try and error eyeballing.

Pax
1800000

2200000

1400000

Loess-Glatter: span=0.4

19000 20000 21000 22000 23000 24000 25000
ATM
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Simple Linear Regression

The more air traffic movements, the more passengers there are.

The relation seems to be linear, which is of course also the
mathematically most simple way of describing the relation.

f(X)= B, + B resp. Pax= 3 + .- ATM

Name/meaning of the two B, = "Intercept”
parameters in the equation: S, = "Slope"

Fitting a straight line into a 2-dimensional scatter plot is known
as simple linear regression. This is because:

» there is just one single predictor variable ("simple").

« the relation is linear in the parameters (“linear").

Marcel Dettling, Zurich University of Applied Sciences
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Model, Data & Random Errors

No we are bringing the data into play. The regression line will not
run through all the data points. Thus, there are random errors:

Yi = ,30 +,31Xi +E;, forall i=1,...,n
Meaning of variables/parameters:
Y, is the response variable (Pax) of observation I .

X is the predictor variable (ATM) of observation 1.

By, B, are the regression coefficients. They are unknown
previously, and need to be estimated from the data.

Ei IS the residual or error, 1.e. the random difference bet-
ween observation and regression line.

Marcel Dettling, Zurich University of A pplied Sciences
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Least Squares Fitting

9

Instructions for this demo are down below the graph.
oo weee || VWE Need to fit a straight
od | line that fits the data well.
70 c c
g ... | Many possible solutions
cd exist, some are good,
19 “1  some are worse.
30 LS
50 Our paradigm is to fit the

Sum of Squares = 78 :
19 line such that the squared
100 200 300 400 500 600 700 s00 5o gl | SITOTS are minimal.

Marcel Dettling, Zurich University of Applied Sciences 35
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Least Squares: Mathematics

The paradigm in verbatim...

regression line such that the sum of squared differences
between observed value Y. and regression line is minimal.

The function
QUL A) = Y17 =X (1, =97 = 303, ~ (B, + Ax))” = mint

measures, how well the regression line, defined by 4, 3, fits
the data. The goal is to minimize the function.

Solution: =2 see next slide...

36
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Solution Idea: Partial Derivatives

* We are taking partial derivatives on the function Q(4,, 4,) with
respect to both arguments £, and f,. As we are after the
minimum of the function, we set them to zero:

@: 0 and @ =0
Of, op,

 This results in a linear equation system, which (here) has two
unknowns [, 3, but also two equations. These are also
known under the name normal equations.

« The solution for f3,, 5, can be written explicitly as a function of
the data pairs (X;,Y.).., ,.see next slide...

i niversity of Applied Sciences
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Least Squares: Solution

According to the least squares paradigm, the best fitting
regression line is, i.e. the optimal coefficients are:

YR -Y)
ﬁlz =1 .
Z(Xi _Y)Z

» For a given set of data points (X;,Y;);, ,.we can determine
the solution with a pocket calculator (...or better, with R).

und ,éo = 7_1817

* The solution for our example Pax vs. ATM:
S, =138.8, B, =-1197'682

- Im(Pax ~ ATM, data=ailrpax)

Marcel Dettling, Zurich University of Applied Sciences
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Least Squares Regression Line

Pax vs. ATM
o
o
o
O —
o
~
N
o
X o
g g
o
©
—
o
o
o
S - | | | | | | |
S 19000 20000 21000 22000 23000 24000 25000
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Marcel Dettling, Zurich University of Applied Sciences
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Is This a Good Model for Predicting the
Pax Number from the ATM?

a) Beyond the range of observed data
Unknown, but most likely not...

b) Within the range of observed data

Yes, under the following conditions:
- the relation is in truth a straight line, i.e. E[E;]=0
- the scatter of the errors is constant, i.e. Var(E,) = 6°
- the data are uncorrelated (from a representative sample)
- the errors are approximately normally distributed

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 40
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Model Diagnostics

For assessing the quality of the regression line, we need to
(at least roughly) check whether the assumptions are met:
E[E.]=0 and Var(E,) = c° can be reviewed by:

Residuals vs. ATM Residuals vs. Fitted Values

L% B | %) |
E E
> S D
(¢)) (¢))
oY _ oY _

Lo Lo

o o

¥ _ B .

3 | | | | | | | 3 | | |

19000 21000 23000 25000 1400000 1800000 2200000

ATM Fitted Values
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Model Diagnostics

For assessing the quality of the regression line, we need to
(at least roughly) check whether the assumptions are met:
Gaussian distribution can be reviewed by:

Normal Q-Q Plot

We will revisit model diagnostics
again later in this course, where
it will be discussed more deeply.

0e+00 5e+04

Sample Quantiles

"Residuals vs. Fitted" and the
"Normal Plot" will always stay at
. the heart of model diagnostics.

-1e+05
|
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Theoretical Quantiles
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Why Least Squares?
History...

Within a few years (1801, 1805), the method was developed
iIndependently by Gauss and Legendre. Both were after solving
applied problems in astronomy...

Source: =2 http://de.wikipedia.org/wiki/Methode der kleinsten Quadrate
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Why Least Squares?
Mathematics...

o Least Squares is simple in the sense that the solution is
known in closed form as a function of (X, V.)._,

 The line runs through the center of gravity (X,Y)

» The sum of residuals adds up to zero: D), =0
=1

« Some deeper mathematical optimality can be shown when_
analyzing the large sample properties of the estimates £3,, £,
This is especially true under the assumption of normally
distributed errors E..

ich University of Applied Sciences 44
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Gauss-Markov-Theorem

Mathematical optimality result for the Least Squares line.
It only holds if the following conditions are met:

- the relation is in truth a straight line, i.e. E[E. ]=0
- the scatter of the errors is constant, i.e. Var(E,) = o*
- the errors are uncorrelated, i.e. Cov(E;,E;) =0, if i+ ]

Not yet required:
- the errors arenormaty-distributed £ = N(0, o

Gauss-Markov-Theorem:
- Least Squares yields the best linear unbiased estimates

2

ich University of Applied Sciences 45
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Properties of the Least Square Estimates

Under the conditions above, the estimates are unbiased:

E[,éo]:ﬁo and E[,é1]:ﬂ1

The variances of the estimates are as follows:

2

1 g

Var(,éo) = Ué '[_

and Var(,@l)z -
Z,zl(xi—Y)Z

+— X —
4 Zizl(xi —X) |
Precise estimates are obtained with:
- alarge number of observations n
- a good scatter in the predictor X

- an informative/useful predictor, making o small

Marcel Dettling, Zurich University of Applied Sciences 46



