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Residual Analysis for Multiple Regression
Toolbox:

Model diagnostics for multiple linear regressions is based
on a set of 4 different residual plots. These are routinely 
checked with every fitted model.

- Tukey-Anscombe Plot
- Normal Plot
- Scale-Location Plot
- Leverage Plot with Cook's Distance

In R: > plot(fit)

Marcel Dettling, Zurich University of Applied Sciences
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More Residual Plots
General Remark:
We are allowed to plot the residuals versus any arbitrary 
variable we wish. This includes:

•   predictors that were used
•   potential predictors which were not (yet) used
•   other variables, e.g. time/sequence of the observations

The rule is:
No matter what the residuals are plotted against, there must
not be any non-random structure. Else, the model has some 
deficiencies, and needs improvement!
Marcel Dettling, Zurich University of Applied Sciences
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Residuals vs. (Potential) Predictors
Example:

This dataset deals with the prestige of Canadian occupations. 
There are 102 different observations and 6 columns:

educ income  women prest cens type

gov.administrators 13.11  12351  11.16  68.8  1113  prof 

general.managers 12.26  25879   4.02  69.1  1130  prof 

accountants         12.77   9271  15.70  63.4  1171  prof

We start with fitting the model: prestige ~ income + education, 
but do not take into account any of the remaining predictors.

Marcel Dettling, Zurich University of Applied Sciences



5

Applied Statistical Regression
AS 2012 – Week 08

Residuals vs. (Potential) Predictors

Marcel Dettling, Zurich University of Applied Sciences
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Residuals vs. Potential Predictors
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Residuals vs. Potential Predictors
> boxplot(resid(fit) ~ type)
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Motivation for Partial Residual Plots
Problem:

We sometimes want to learn about the relation between a 
predictor and the response, and also visualize it. Is it also of 
importance whether it is directly linear.

How can we infer this?

•   we can plot     versus predictor        
•   however, the problem is that all the other predictors also

influence the response and thus blur our impression
•   thus, we require a plot which shows the "isolated" influence

of predictor     on the response     
Marcel Dettling, Zurich University of Applied Sciences
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Partial Residual Plots
Idea:

We remove the estimated effect of all the other predictors from 
the response and plot this versus the predictor     . 

We then plot these so-called partial residuals versus the 
predictor    . We require the relation to be linear!

Partial residual plots in R:
- library(car); crPlots(...)
- library(faraway); prplot(...)

Marcel Dettling, Zurich University of Applied Sciences
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Partial Residual Plots: Example
We try to predict the prestige of a number of 102 different 
profession with a set of 2 predictors:

prestige ~ education + income

> data(Prestige)
> head(Prestige)

education income women prestige census type
gov.administrators 13.11  12351 11.16     68.8   1113 prof
general.managers 12.26  25879  4.02     69.1   1130 prof
accountants             12.77   9271 15.70     63.4   1171 prof
purchasing.officers 11.42   8865  9.11     56.8   1175 prof
chemists                14.62   8403 11.68     73.5   2111 prof
...
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Partial Residual Plots: Example
library(car); data(Prestige)

fit <- lm(prestige ~ education + income, data=Prestige)

crPlots(fit, layout=c(1,1))
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Partial Residual Plots: Example
library(car); data(Prestige)

fit <- lm(prestige ~ education + income, data=Prestige)

crPlots(fit, layout=c(1,1))
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Partial Residual Plots: Example
library(car); data(Prestige)

fit <- lm(prestige ~ education + log(income), Prestige)

crPlots(fit, layout=c(1,1))

After a log-trsf of
predictor 'income',
things are fine
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Partial Residual Plots
Summary:

Partial residual plots show the marginal relation between a 
predictor     and the response   . 

When is the plot OK?

If the red line with the actual fit, and the green line of the 
smoother do not show systematic differences.

What to do if the plot is not OK?
- apply a transformation
- use Generalized Additive Models (GAM, tbd later)

Marcel Dettling, Zurich University of Applied Sciences
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Checking for Correlated Errors
Background:

For LS-fitting we require uncorrelated errors. For data which 
have timely or spatial structure, this condition happens to be 
violated quite often.

Example:
- library(faraway); data(airquality)
- Ozone ~ Solar.R + Wind
- Measurements from 153 consecutive days in New York
- data have a timely sequence

 to be handled with care!
Marcel Dettling, Zurich University of Applied Sciences
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Residuals vs. Time/Index
> plot(resid(fit)); lines(resid(fit))
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Alternative: Durbin-Watson-Test
The Durbin-Watson-Test checks if consecutive 
observations show a sequential correlation: 

Test statistic:

- under the null hypothesis "no correlation", the test statistic 
has a    - distribution. The p-value can be computed. 

- the DW-test is somewhat problematic, because it will only 
detect simple correlation structure. When more complex 
dependency exists, it has very low power. 

Marcel Dettling, Zurich University of Applied Sciences
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Durbin-Watson-Test
R-Hints:

library(lmtest)

> dwtest(Ozone ~ Solar.R + Wind, data=airquality)

Durbin-Watson test

data:  Ozone ~ Solar.R + Wind 

DW = 1.6127, p-value = 0.01851

alternative hypothesis: true autocorrelation is greater than 0 

The null hypothesis is rejected. We conclude that the residuals 
are correlated. For more details, see the exercises...
Marcel Dettling, Zurich University of Applied Sciences
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Residuals vs. Time/Index
When is the plot OK?

- There is no systematic structure present
- There are no long sequences of pos./neg. residuals
- There is no back-and-forth between pos./neg. residuals

What to do if the plot is not OK?
1) Search for and add the "forgotten" predictors
2) Using the generalized least squares method (GLS)
 to be discussed in Applied Time Series Analysis

3) Estimated coefficients and fitted values are not biased, but 
confidence intervals and tests are: be careful! 

Marcel Dettling, Zurich University of Applied Sciences
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Further Strategies for Problem Solving
Where are we?

• We know the model assumptions and the standard plots for 
diagnostics. And we also know how we can identify problems 
in these plots.

• So far, we discussed how "non-linear" relations (i.e. missing 
transformations in response/predictors) can be recognized, 
or how we can identify missing predictors. 

• Now, we will be discussing two specific model violations, 
which cannot be dealt with using transformations: these are 
non-constant variance and long-tailed errors. 

Marcel Dettling, Zurich University of Applied Sciences
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Weighted Regression
When to use?

Weighted regression is used when symmetrically distributed 
errors have zero expectation, but, according to the Scale-
Location-Plot, have non-constant variance. 

Important:

If non-constant variance is observed together with non-
optimal model structure, and/or skewed errors, then weighted 
regression is not the right tool. In that case, better search for
a response/predictor transformation.

Marcel Dettling, Zurich University of Applied Sciences
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Weighted Regression: Model
The model is:

, wobei

 For the non-weighted ordinary least squares regression, the
error covariance matrix is the identity:   

We still assume uncorrelated errors, but no longer do we
assume constant variance. The covariance matrix can thus
be: 

Y X    2~ (0, )N   

I 

1 2

1 1 1, ,...,
n

diag I
w w w
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Weighted Regression: And Now?
In a weighted least squares problem, the regression
coefficients are estimated by minimizing a weighted sum of
squares: 

If the design matrix has full rank, this minimization problem has 
an explicit and unique solution. Moreover: 

- Observations with small variance (i.e. where one is "sure" 
about the position of the data point) obtain large weight in 
the regression fit, and vice versa. 
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Where Are the Weights from?
1) If the response      is the mean from several independent 

observations, but not the same number of every data point. 
Then use:           .       

Example: Regression where daily cost in a mental hospital
is explained with some socio-demographic predictors. The 
response variable is:

"Total cost for the stay" / "Length of stay in days"

The bigger the number of days that were used for
assessing the cost, the more precise (=lower variance) the
average cost is determined.

iY

i iw n
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Where are the weights from?
2) One knows or can easily see that the variance in the

residuals is proportional to a predictor.
Then, we use: 

Example: see Exercises...

3) If non-constant variance is only "observed", but the cause is 
unknown (with respect to 1) and 2) above), the we can still 
try to first fit an ordinary least squares regression and use it 
for estimating weights, which will then be used in an 
weighted linear regression.

Example: none...

1/i iw x
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Robust Regression
When to use?

Robust regression is used if the residuals are symmetrically 
distributed and have expectation zero, but are more heavy-
tailed than the Gaussian distribution suggests. 

Be careful:
If long-tailed resdiuals appear in conjunction with a non-idle 
Tukey-Anscombe-Plot, and/or with non-constant variance, 
or if the residuals are skewed, then applying transformations 
is more appropriated than using robust regression.

Also if there are a few gross outliers, it's better to study 
these in detail, rather than just applying robust regression. 

Marcel Dettling, Zurich University of Applied Sciences
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Robust Regression: Model
The model in robust regression is:

, where

 The errors are assumed to be symmetrically distributed, 
but more heavy-tailed than the Gaussian. 

 In this case, the LS-method is no longer optimal/efficient. 
There are better estimators for the regression coefficients.

 Short-tailed errors do not need special attention. In such 
cases, it is fine to apply the ordinary LS method. 

y X E  ! 2~ (0, )EE N  
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Robust Regression: Idea
In robust regression, observations with large residuals obtain a 
smaller weight. This is implemented by using a modified "loss 
function", i.e. no longer the LS-criterion, that measures the 
quality of the fit:

Visualization: see next slide!

There is no solution which can be written in closed form, and 
an optimization procedure needs to be employed. This is done 
by solving iteratively reweighted least squares regressions. 
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Huber Loss Function
This function is used as the default in R-function rlm() from  
library(MASS). There are many other suggestions…
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Robust Regression: R-Code
> library(MASS)

> fit.rlm <- rlm(Mortality ~ JanTemp + … + log(SO2), data=…)

 This uses the Huber loss function
 The summary is different!

summary(fit.rlm)

Coefficients: Value Std. Error    t value 

(Intercept) 945.4414  251.6184     3.7574

JanTemp      -1.2313   0.6788     -1.8139

log(SO2)     13.0484   4.6444      2.8095

---

Residual standard error: 30.17 on 46 degrees of freedom


