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of iteratively reweighted least squares regressions (the IRLS algorithm). We do 
without giving further details, but instead focus on the practical application. 

> glm(survival~log(weight)+age, family="binomial", data=baby) 
 
Coefficients: 
(Intercept)  log(weight)       age 
   -33.9711       4.4161    0.1474 

This is only a part of the output, but for the moment the most interesting one, 
namely the estimated coefficients 0 1

ˆ ˆ,   and 2̂ .  

4.3 Poisson Regression 

The method of Poisson Regression is the formally correct way of dealing with 
response variables that are counts. This is a strong statement, given the fact that 
throughout the discussion on simple linear regression, this scriptum uses the count 
variable number of passengers as a response. While being contradictory to some 
extent, it is tolerable: the counts are all large (in the millions) and their range is 
relatively small. In such a situation, we can profit from the fact that the 
approximation of the Poisson to the Gaussian distribution works well, i.e. there is 
little difference between the two. However, there are examples where the use of 
Poisson Regression is a must: 

 if the size of the population is unknown and the counts are small. 

 if the size of the population is large and hard to come by, and the probability 
of an event, and thus the expected counts are small. 

A typical example for the latter case is modeling the incidence of rare forms of 
cancer in a given geographical area. For illustrating the former case, we will 
consider the following example. 

4.3.1 Example: Tortoise Species on Galapagos 

For 30 of Galapagos Islands’ we have the response variable Species, i.e. the 
number of species of tortoise that are present, plus five geographic predictors. 
These are the area of the island, the highest elevation, the distance to the nearest 
island, the distance to Santa Cruz and the area of the adjacent island. 

> library(faraway); data(gala); head(gala[,-2]) 
             Species  Area Elevation Nearest Scruz Adjacent 
Baltra            58 25.09       346     0.6   0.6     1.84 
Bartolome         31  1.24       109     0.6  26.3   572.33 
Caldwell           3  0.21       114     2.8  58.7     0.78 
Champion          25  0.10        46     1.9  47.4     0.18 
Coamano            2  0.05        77     1.9   1.9   903.82 
Daphne.Major      18  0.34       119     8.0   8.0     1.84 
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Fitting a multiple linear regression without doing any transformations yields very 
poor results: there is a bias, the error distribution is long-tailed and has non-
constant variance. Additionally, there are some strong leverage points. We leave 
generating these diagnostic plots as an exercise. The first-aid transformations 
from section 2.6.7 suggest that all predictors, which can only take positive values 
and are strongly skewed to the right, need to be log-transformed. Since Scruz has 
a zero entry, we add its smallest positive value. The response, which is a count, is 
due for taking the square root. The output is: 

> fit02 <- lm(sqrt(Species) ~ log(Area) + log(Elevation) +  
              log(Nearest) + I(log(Scruz+0.4)) + 
              log(Adjacent), data=gala[,-2]) 
> summary(fit02) 
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)           9.8839     5.0523   1.956   0.0622 .   
log(Area)             1.5609     0.3025   5.160 2.77e-05 *** 
log(Elevation)       -0.4440     0.9777  -0.454   0.6538     
log(Nearest)         -0.5273     0.3495  -1.509   0.1444     
I(log(Scruz + 0.4))  -0.3989     0.3267  -1.221   0.2339     
log(Adjacent)        -0.2737     0.1387  -1.973   0.0602 .   
--- 
Residual standard error: 2.382 on 24 degrees of freedom 
Multiple R-squared: 0.8398, Adjusted R-squared: 0.8064 
F-statistic: 25.15 on 5 and 24 DF, p-value: 8.176e-09 
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While error distribution/variance are acceptable (not perfect though!) and there are 
no leverage points anymore, there is a bias. The square root transformation on the 
response is somewhat too strong. A better fitting relation can be obtained by 
taking a log-transformation on Species instead of the square root. Better yet is to 
deal correctly with the situation: due to low counts in the response, the Gaussian 
approximation is questionable. Thus, it is better to use Poisson Regression. 

4.3.2 Model and Estimation 

We have count responses iY  for which we, given the predictors, assume a 
Poisson distribution with parameter i , i.e. | ~ ( )i iY X Pois  . Our goal is to relate 
the parameter to the predictors, and because i  can take positive values only, we 
will employ the log as a link function: 

 0 1 1log( ) ...i i p ipx x        

Because the conditional expectation is [ | ]i iE Y X  , we again have the previously 
recognized situation that a link functions opens the door to modeling the expected 
value of the conditional distribution of iY  by the linear predictor. For estimating the 
coefficients 0 ,..., p  , we again employ the MLE principle. By assuming 
independence of the cases, the likelihood function can be written as the product of 
the marginal distributions: 

 1 1
1 1

( ,..., | ) ( | )
!

i iyn n
i

n n i i
i i i

e
P Y y Y y X P Y y X

y

 

 


       

The parameters and predictors enter the above equation by replacing i  with 

0 1 1exp( ... )i p px x     . The goal is to maximize the likelihood. In the 
multiplicative form, this is inconvenient, thus we again employ the trick of changing 
to the log-likelihood: 

  
1

( ) log( ) log( !)
n

i i i i
i

l y y  


     

For finding the optimum, we take partial derivatives with respect to 0 ,..., p  . As 
usual for GLMs, this results in a non-linear equation system. There is no closed 
form solution and we have to resort to the iteratively reweighted least squares 
(IRLS) approach for an approximation. This is already implemented in R, and we 
can conveniently fit the Poisson Regression model to the Galapagos data: 

> fit <- glm(Species ~ log(Area) + log(Elevation) + 
             log(Nearest) + I(log(Scruz+0.4)) + 
             log(Adjacent), data=gala, family=poisson) 

Again, be aware of the fact that estimating the coefficients is based on numerical 
optimization. Should a warning be given that the algorithm did not converge, it is 
for a reason and to be taken seriously. The summary output is as follows: 
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> summary(fit) 
 
Coefficients: 
                     Estimate Std. Error z value Pr(>|z|)     
(Intercept)          3.323245   0.286430  11.602  < 2e-16 *** 
log(Area)            0.350370   0.018005  19.459  < 2e-16 *** 
log(Elevation)       0.033108   0.057034   0.580  0.56158     
log(Nearest)        -0.040153   0.014071  -2.854  0.00432 **  
I(log(Scruz + 0.4)) -0.035848   0.013207  -2.714  0.00664 **  
log(Adjacent)       -0.089452   0.006944 -12.882  < 2e-16 *** 
--- 
    Null deviance: 3510.73  on 29  degrees of freedom 
Residual deviance:  359.94  on 24  degrees of freedom 
AIC: 532.77 

4.3.3 Diagnostics and Inference 

As for Binomial Regression, there is a quick check for model adequacy: if the 
residual deviance is far in excess of the degrees of freedom in the model, there is 
too much variation in the response. More precisely, we have that: 

 2
( 1)

1

ˆ2 log ( )
ˆ

n
i

i i i n p
i i

y
D y y  

  


  
     

   
  

In our example, the residual deviance is 359.94 on just 24 degrees of freedom. 
This is far in excess of the degrees of freedom. We can compute the p-value for 
the null hypothesis that the fitted model is correct: 

> pchisq(deviance(fit), df.residual(fit), lower=FALSE) 
[1] 1.185031e-61 

The p-value is very small, indicating that we have an ill-fitting model if a Poisson 
distribution for the response is correct. Our next job is to recognize why and where 
the fit is poor. This is done using some diagnostic visualization. We start with the 
Tukey-Anscombe plot, where either the deviance residuals or the Pearson 
residuals are plotted vs. the linear predictor. We go in line with R and use the 
latter, which are defined as: 

 
ˆ( )

ˆ
i i

i

i

y
P






  

The Pearson residuals iP  approximately follow a standard normal distribution. This 
suggests that cases with 2iP   are extraordinary, i.e. show bigger residuals than 
the Poisson model suggests.  

> xx <- predict(fit, type="link") 
> yy <- resid(fit, type="pearson") 
> plot(xx, yy, main=”Tukey-Anscombe Plot...”) 
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> smoo <- loess.smooth(xx, yy) 
> abline(h=0, col="grey") 
> lines(smoo, col="red") 

 

We observe that there is hardly a bias, thus the functional form might be correct. 
However, there most of the residuals are larger than the Poisson distribution 
suggests. This is most likely due to the fact that our predictors are too simple: we 
just take distance and area of the nearest island into account, which does not 
reflect clusters of islands in close vicinity well. 

In the present situation, where the predictor-response relation is correct, but the 
variance assumption of the Poisson distribution is broken, the point estimates for 

0
ˆ ˆ,..., p   and thus î  are unbiased, but the standard errors will be wrong. This 

makes the model still suitable for prediction, though the inference results are in 
question, i.e. we cannot say which variables are statistically significant, because 
the p-values from the summary output are flawed. 

Because the Poisson distribution has only one single parameter, it is not very 
flexible for empirical fitting purposes. This can be cured by estimating the 
dispersion parameter, which is in turn used for generating better standard errors. 
The estimate is defined as: 

 
2ˆ ˆ( ) /ˆ

( 1)
i i ii

y

n p

 





 


 

This is the sum of squared Pearson residuals, divided by the degrees of freedom 
in this model. In R, the command is: 

> sum(resid(fit, type="pearson")^2)/df.residual(fit) 
[1] 16.64651 
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An alternative estimate for the dispersion parameter would be to take the quotient 
of the residual deviance and the degrees of freedom. Indeed, the result is similar 
with ˆ 15  . 

> summary(fit, dispersion=16.64651) 
 
Coefficients: 
                    Estimate Std. Error z value Pr(>|z|)     
(Intercept)          3.32325    1.16864   2.844  0.00446 **  
log(Area)            0.35037    0.07346   4.769 1.85e-06 *** 
log(Elevation)       0.03311    0.23270   0.142  0.88686     
log(Nearest)        -0.04015    0.05741  -0.699  0.48430     
I(log(Scruz + 0.4)) -0.03585    0.05389  -0.665  0.50589     
log(Adjacent)       -0.08945    0.02833  -3.157  0.00159 **  
--- 
Dispersion parameter for poisson family: 16.647 
Null deviance: 3510.73 on 29 degrees of freedom 
Residual deviance: 359.94 on 24 degrees of freedom 
AIC: 532.77 

Note that the estimation of dispersion and regression parameters are independent, 
thus modifying the dispersion parameter does not change the coefficients. In our 
example, some of the predictors now turn out to be non-significant. Also, the p-
values are now not too different to the ones from the multiple linear regression 
model. For the mathematically interested, please note that since the Gaussian 
distribution has two parameters, the dispersion parameter is naturally estimated in 
multiple linear regression with the residual standard error. 


