Fractional Factorials

- Too many runs for many factors
- Ignore some high-order interactions and run only a fraction of all possible runs
- How to choose the runs?

Half-replicate

Optimal coverage

Leaf spring experiment

- An experiment to improve a heat treatment process on truck leaf springs.
- The heat treatment consists of heating in a high temperature oven, processing by a forming machine, and cooling in an oil bath.
- The response, the height of an unloaded spring, should be 8.0.
- half fraction of a 2⁵ design is used to study 5 factors.

		Level				
Factor		_	+			
A	heat temperature (°F)	1840	1880			
В	heating time (seconds)	23	25			
С	transfer time (seconds)	10	12			
D	hold down time (seconds)	2	3			
Е	oil temperature (°F)	130-150	150-170			

Why using fractional factorials?

2⁵ design has 32 runs to estimate the overall mean and

Main	Interactions							
Effects	2-Factor	3-Factor	4-Factor	5-Factor				
5	10	10	5	1				

- 4-factor, 5-factor and even 3-factor interactions are not likely to be important. There are 10+5+1 = 16 such effects, half of the total runs!
- use a half-replicate. What price is to pay?

Design matrix

Treatment	А	В	С	D	Е
(1)	_	_	_	_	_
ab	+	+	_	_	_
ac	+	_	+	_	_
bc	_	+	+	_	_
ad	+	_	_	+	_
bd	_	+	_	+	_
cd	_	_	+	+	_
abcd	+	+	+	+	_
е	_	_	_	_	+
abe	+	+	_	_	+
ace	+	_	+	_	+
bce	_	+	+	_	+
ade	+	_	_	+	+
bde	_	+	_	+	+
cde	_	_	+	+	+
 abcde	+	+	+	+	+

- Column D is equal to the product of columns A, B and C. Estimation for main effect of D is equal to estimation for the ABC interaction: the main effect D is aliased with the interaction ABC. We write D = ABC.
- Then $D^2 = I = ABCD$. I = ABCD is the defining relation for the 2^{5-1} design.
- 'Multiply' each side by an effect, e.g.

 $A \cdot I = A = A \cdot ABCD = A^2 \cdot BCD = I \cdot BCD = BCD$

 $AB \cdot I = AB = AB \cdot ABCD = A^2B^2CD = CD$

Aliasing structure

The complete *aliasing structure* is:

- I = ABCDAD = BC
- A = BCD
- B = ACD
- C = ABD
- D = ABC
- E = ABCDE
- AB = CD
- AC = BD

- AE = BCDE
- BE = ACDE
- CE = ABDE
- DE = ABCE
- ABE = CDE
- ACE = BDE
- ADE = BCE

Construction method I

To construct a 2^{4-1} design choose one block of a 2^4 design divided into two blocks. Confound the ABCD interaction with blocks and take the principal block as half replicate.

Choose two confounding interactions: AB und CD. ABCD is also confounded with blocks.

(1)
ab
cd
abcd

Aliasing structure: I = AB, CD, ABCD A = B, ACD, BCD C = ABC, D, ABDAC = BC, AD, BD

Construction method II

To construct a 2^{4-1} design start with a 2^3 design and dentify the fourth factor with the ABC interaction								
Treatment		Α	B	AB	С	AC	BC	ABC=D
(1)	+	_	_	+	_	+	+	_
a	+	+	_	_	_	_	+	+
b	+	_	+	_	_	+	_	+
ab	+	+	+	+	—	—	—	—
С	+	—	—	+	+	—	—	+
ac	+	+	—	—	+	+	—	—
bc	+	—	+	_	+	—	+	—
abc	+	+	+	+	+	+	+	+

- Resolution = length of shortest word among the $2^{l} 1$ words used in the defining relations.
- In any resolution III design, main effects are not confounded with other main effects.
- In any resolution IV design, main effects are not aliased with any other main effect or 2-factor interactions.
- In any resolution V design, the main effects are not aliased with any other main effect, 2-factor or 3-factor interactions. The two-factor interactions are not aliased with any other 2-factor interaction.