Fractional Factorials

- Too many runs for many factors

■ Ignore some high-order interactions and run only a fraction of all possible runs

- How to choose the runs?

Full 2^{3} factorial

Half-replicate

Optimal coverage

2^{3-1} design

run	A	B	C	AB	AC	BC	ABC
(1)	-	-	-	+	+	+	-
ab	+	+	-	+	-	-	-
ac	+	-	+	-	+	-	-
bc	-	+	+	-	-	+	-

$$
\hat{C}=-\hat{A B}, \hat{B}=-\hat{A C}, \hat{A}=-\hat{B C}, \hat{I}=-A \hat{B} C
$$

Leaf spring experiment

■ An experiment to improve a heat treatment process on truck leaf springs.

- The heat treatment consists of heating in a high temperature oven, processing by a forming machine, and cooling in an oil bath.
■ The response, the height of an unloaded spring, should be 8.0.
- half fraction of a 2^{5} design is used to study 5 factors.

Factors and levels

		Level	
Factor		-	+
A	heat temperature $\left({ }^{\circ}\right.$ F)	1840	1880
B	heating time (seconds)	23	25
C	transfer time (seconds)	10	12
D	hold down time (seconds)	2	3
E	oil temperature $\left({ }^{\circ}\right.$ F)	$130-150$	$150-170$

Why using fractional factorials?

■ 2^{5} design has 32 runs to estimate the overall mean and

Main	Interactions			
Effects	2-Factor	3-Factor	4-Factor	5-Factor
5	10	10	5	1

■ 4-factor, 5 -factor and even 3-factor interactions are not likely to be important. There are $10+5+1=16$ such effects, half of the total runs!
■use a half-replicate. What price is to pay?

Design matrix

Treatment	A	B	C	D	E
(1)	-	-	-	-	-
ab	+	+	-	-	-
ac	+	-	+	-	-
bc	-	+	+	-	-
ad	+	-	-	+	-
bd	-	+	-	+	-
cd	-	-	+	+	-
abcd	+	+	+	+	-
e	-	-	-	-	+
abe	+	+	-	-	+
ace	+	-	+	-	+
bce	-	+	+	-	+
ade	+	-	-	+	+
bde	-	+	-	+	+
cde	-	-	+	+	+
abcde	+	+	+	+	+

Aliases and defining relation

\square Column D is equal to the product of columns A, B and C. Estimation for main effect of D is equal to estimation for the $A B C$ interaction: the main effect D is aliased with the interaction $A B C$. We write $D=A B C$.

- Then $D^{2}=I=A B C D . I=A B C D$ is the defining relation for the 2^{5-1} design.
■ 'Multiply' each side by an effect, e.g.

$$
\begin{gathered}
A \cdot I=A=A \cdot A B C D=A^{2} \cdot B C D=I \cdot B C D=B C D \\
A B \cdot I=A B=A B \cdot A B C D=A^{2} B^{2} C D=C D
\end{gathered}
$$

Aliasing structure

The complete aliasing structure is:

$$
\begin{aligned}
I & =A B C D \\
A & =B C D \\
B & =A C D \\
C & =A B D \\
D & =A B C \\
E & =A B C D E \\
A B & =C D \\
A C & =B D
\end{aligned}
$$

$$
\begin{aligned}
A D & =B C \\
A E & =B C D E \\
B E & =A C D E \\
C E & =A B D E \\
D E & =A B C E \\
A B E & =C D E \\
A C E & =B D E \\
A D E & =B C E
\end{aligned}
$$

Construction method I

To construct a 2^{4-1} design choose one block of a 2^{4} design divided into two blocks. Confound the ABCD interaction with blocks and take the principal block as half replicate.

(1)
$a b$
$a c$
$b c$
$a d$
$b d$
$c d$
$a b c d$

2^{4-2} Design

Choose two confounding interactions: AB und CD. $A B C D$ is also confounded with blocks.

(1)
$a b$
$c d$
$a b c d$

Aliasing structure:

$$
\begin{aligned}
& I=A B, C D, A B C D \\
& A=B, A C D, B C D \\
& C=A B C, D, A B D \\
& A C=B C, A D, B D
\end{aligned}
$$

Construction method II

To construct a 2^{4-1} design start with a 2^{3} design and identify the fourth factor with the $A B C$ interaction.
Treatment I A B AB C $A C \quad B C \quad A B C=D$

(1)	+	-	-	+	-	+	+	-
a	+	+	-	-	-	-	+	+
b	+	-	+	-	-	+	-	+
ab	+	+	+	+	-	-	-	-
c	+	-	-	+	+	-	-	+
ac	+	+	-	-	+	+	-	-
bc	+	-	+	-	+	-	+	-
abc	+	+	+	+	+	+	+	+

Resolution of a design

- Resolution = length of shortest word among the $2^{l}-1$ words used in the defining relations.
- In any resolution III design, main effects are not confounded with other main effects.
■ In any resolution IV design, main effects are not aliased with any other main effect or 2-factor interactions.
\square In any resolution V design, the main effects are not aliased with any other main effect, 2-factor or 3 -factor interactions. The two-factor interactions are not aliased with any other 2-factor interaction.

