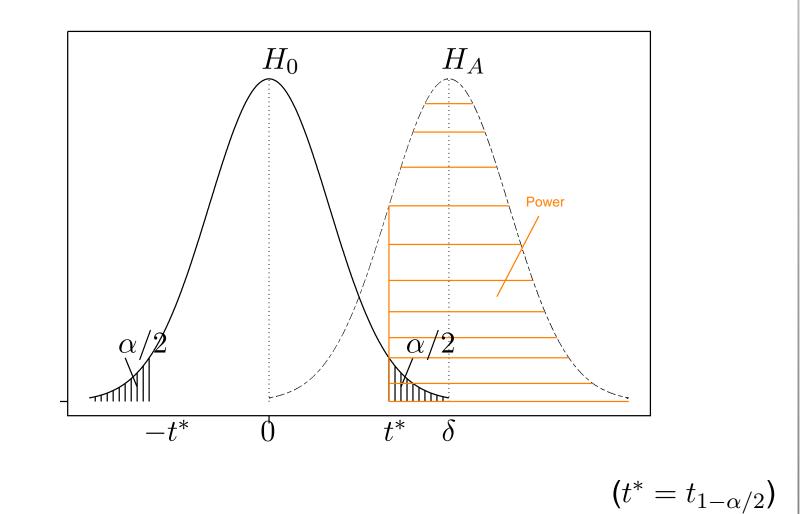
- Type I error = reject H₀ when H₀ is true. The probability of a Type I error is called the significance level of the test, denoted by α.
- **Type II error**= fail to reject H_0 when H_0 is false. The probability of a type II error is denoted by β .
- The power of a test is

power = $P(\text{ reject } H_0 | H_0 \text{ is false }) = 1 - \beta$

Test statistic under H_0 and H_A



The power depends on α, δ, σ and n

Power calculation in general

- Prospective: want a power of $\ge 80\%$, determine the necessary sample size.
- Retrospective: sample size was given, test not significant, how much power did we have?

Let X_{11}, \ldots, X_{1n} iid and X_{21}, \ldots, X_{2n} iid independent.

 $H_0: X_{1i} \sim \mathcal{N}(\mu_1, \sigma^2), X_{2j} \sim \mathcal{N}(\mu_2, \sigma^2) \text{ with } \mu_1 = \mu_2$ $H_A: X_{1i} \sim \mathcal{N}(\mu_1, \sigma^2), X_{2j} \sim \mathcal{N}(\mu_2, \sigma^2) \text{ with } \mu_1 \neq \mu_2$

Under H_0 : $\bar{X}_1 - \bar{X}_2 \sim \mathcal{N}(0, \sigma^2(\frac{1}{n} + \frac{1}{n})) \Rightarrow \frac{\bar{X}_1 - \bar{X}_2}{\sigma\sqrt{2/n}} \sim \mathcal{N}(0, 1)$ Estimate σ^2 by $S_p^2 = \frac{S_1^2 + S_2^2}{2}$ $t = \frac{\bar{X}_1 - \bar{X}_2}{S_p\sqrt{2/n}}$ follows a t distribution with 2n - 2 df

Power calculation

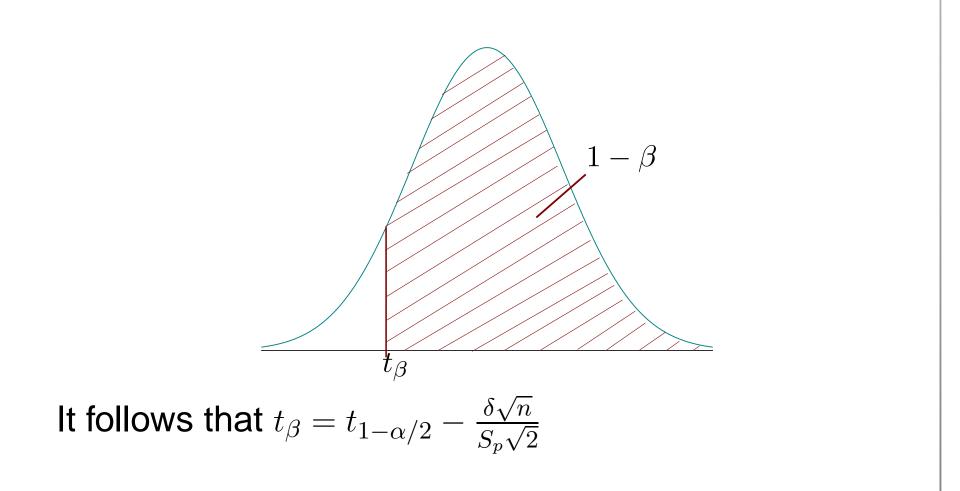
We reject H₀ if $t = \frac{|\bar{x}_1 - \bar{x}_2|}{s_p \sqrt{2/n}} > t_{1 - \alpha/2, 2n - 2}$.

$$1 - \beta = P(\frac{\bar{X}_1 - \bar{X}_2}{S_p\sqrt{2/n}} < -t_{1-\alpha/2,2n-2}|H_A) + P(\frac{\bar{X}_1 - \bar{X}_2}{S_p\sqrt{2/n}} > t_{1-\alpha/2,2n-2}|H_A)$$

Under H_A $\frac{\bar{X}_1 - \bar{X}_2 - \delta}{S_p \sqrt{2/n}}$ follows a *t* distribution with 2n - 2 df. This implies

$$1 - \beta = P(\frac{\bar{X}_1 - \bar{X}_2 - \delta}{S_p \sqrt{2/n}} > t_{1 - \alpha/2} - \frac{\delta}{S_p \sqrt{2/n}}) + \underbrace{P(\frac{\bar{X}_1 - \bar{X}_2 - \delta}{S_p \sqrt{2/n}} < t_{\alpha/2} - \frac{\delta}{S_p \sqrt{2/n}})}_{\text{Prob} \approx 0 \quad (\text{for } \delta > 0)}.$$

Quantiles of the t distribution



Equations for power calculation

For any $\delta \neq 0$, the following equations hold.

$$t_{\beta} = t_{1-\alpha/2} - \frac{|\delta|\sqrt{n}}{s_{p}\sqrt{2}}$$
(1)
$$n = 2(t_{1-\alpha/2} - t_{\beta})^{2} \cdot \frac{s_{p}^{2}}{\delta^{2}}$$
(2)

The power of the F test for $H_0: \mu_1 = \mu_2 = \ldots = \mu_I$ is

 $1-\beta = P_{H_A}(\text{Test significant}) = P(F > F_{1-\alpha,I-1,N-I}|H_A).$

- The distribution of *F* under *H_A* follows a *noncentral F* distribution with non-centrality parameter $\delta^2 = \frac{J \sum A_i^2}{\sigma^2}$ and *I* 1 and *N I* degrees of freedom.
- There are tables, graphs and software (e.g. GPower) which determine the power given $I-1, N-I, \alpha$ and δ .

Use
$$\Delta = \frac{maxA_i - minA_i}{\sigma}$$

Average daily weight gains are to be compared among pigs receiving 4 levels of vitamin B_{12} in their diet.

We estimate σ with $\hat{\sigma} = 0.015$ lbs./day and we would like to detect a difference $maxA_i - minA_i = 0.03$ lbs/day. We set $\alpha = 0.05$ and want a power of 0.90 at least for a balanced design.

This implies $\Delta = 2$ and leads to a minimum of n = 9 pigs per group.