Solution to Series 6

1. a) An experimenter wishes to compare four treatments in blocks of two runs. Find a BIBD with six blocks. We have:

$$n = 4$$

$$b = 6$$

$$k = 2$$

$$r = \frac{kb}{n} = \frac{12}{4} = 3$$

$$\lambda = \frac{r(k-1)}{n-1} = 1$$

We find the BIBD: (Note that $\lambda=1$ implies that any combination of 2 factors can appear just once).

b) An experimenter wishes to compare seven treatments in blocks of three runs. Find a BIBD with seven blocks. We have:

$$\begin{array}{rcl} n & = & 7 \\ b & = & 7 \\ k & = & 3 \\ r & = & \frac{kb}{n} = \frac{21}{7} = 3. \\ \lambda & = & \frac{r(k-1)}{n-1} = 1 \end{array}$$

We find the BIBD. (Note that $\lambda=1$ implies that any combination of 2 factors can appear just once).

			3	4	5	6	7
1	Х	Х	Х				
2	х			Х	Х		
3	х					Х	X
4	× × ×	Х		Х		Х	
5		Х			Х		X
6			Х	Х			X
7			Χ		Χ	Χ	

2. Analyze these data in a split plot anova. Are you comfortable with the assumptions?

We have the following model:

Stratum	Source	df		F
Main plots	Treatment	1		$MS_{TR}/MSres-main$
	Residual	19		
	Total		20	
Sub-plots	Time	1		$MS_{Time}/MSres-sub$
	TR:Time	1		$MS_{TR:Time}/MSres-sub$
	Residual	19		$MS_{TR:Time}/MSres-sub$
	Total		21	
	Total		41	

With the R-function we obtain:

> Sh.fit <- aov(Y~Time*Treatment+Error(Subject/Time),data=Sh)
> summary(Sh.fit)

Error: Subject

Df Sum Sq Mean Sq F value Pr(>F)

Treatment 1 847 847.5 3.627 0.0721 .

Residuals 19 4440 233.7

Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1

Error: Subject:Time

Df Sum Sq Mean Sq F value Pr(>F)
Time 1 542.9 542.9 15.14 0.000982 ***
Time:Treatment 1 407.4 407.4 11.36 0.003209 **

Residuals 19 681.2 35.9

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Time and interaction Time: Treatment are significant. A plot also shows that the new treatment improves response values after surgery, whereas the rates are unchanged with a standard operation. The new operation is therefore superior to the standard treatment.

3. A market investigation explores the potential of three new types of pizzas in six different packings. 90 consumers assess the products on a 0–10 scale. What type of design is used and how does the skeleton anova look like if

Let

$$A = packing$$

 $B = pizza$

a) each person rates the six packings of just one type of pizza,

This is a split plot design with persons as main plots and the ratings of different packings as subplots.

Strata	Source	df	MS	F
Person	В	2	MS_B	$MS_B/MS_{res-main}$
	Residual	87	$MS_{res-main}$	
Subplots	Α	5	MS_A	$MS_A/MS_{res-sub}$
	AB	10	MS_{AB}	$MS_{AB}/MS_{res-sub}$
	Residual	435	$MS_{res-sub}$	
	Total	539		

b) each person rates exactly one pizza in one packing, This is a factorial design.

Source	df	MS	F
A	5	MS_A	MS_A/MS_{res}
В	2	MS_B	MS_B/MS_{res}
AB	10	MS_{AB}	MS_{AB}/MS_{res}
Residual	72	MS_{res}	
Total	89		

c) each person rates every pizza in every packing? This is a complete block design with persons as blocks.

Source	df	MS	F
Blocks	89	MS_{blocks}	
Α	5	MS_A	MS_A/MS_{res}
В	2	MS_B	MS_B/MS_{res}
AB	10	MS_{AB}	MS_{AB}/MS_{res}
Residual	1513	MS_{res}	
Total	1619		

4. Using R and the function 1m we obtain:

> d.st <- lm(formula=Pu~T1+Pr1,data=d)</pre>

> d.st\$coefficients

This can be interpreted as follows:

$$\hat{y} = 84.10 - 0.85 \cdot T + 0.25 \cdot P ,$$

By letting \hat{y} constant we obtain an equation for the contour lines, i.e. contour lines satisfy the equation

$$P = \frac{0.85}{0.25} \cdot T + constant = m_0 T + c .$$

The direction of steepest ascent is then:

$$-\frac{1}{m_0} = -\frac{5}{17} \ .$$