How to calculate an ANOVA table

Calculations by Hand

We look at the following example: Let us say we measure the height of some plants under the effect of 3 different fertilizers.

Treatment	Measures			Mean	\hat{A}_i
Х	1	2	2		
Υ	5	6	5		
\mathbf{Z}	2	1			
Overall mean			//.	••	

STEP 0: The model:

$$Y_{ij} = \mu + A_i + \epsilon_{ij} \tag{0.1}$$

$$\sum_{i} n_i A_i = 0 \tag{0.2}$$

Interpretation:

An observation y_{ij} is given by: the average height of the plants (μ) , plus the effect of the fertilizer (A_i) . and an "error" term (ϵ_{ij}) , i.e. every seed is different and therefore any plant will be different.

All these values $(\mu, A_i, \epsilon_{ij})$ are UNKNOWN!

Our GOAL is to test if the hypothesis $A_1 = A_2 = A_3 = 0$ is plausible¹.

Remark 1 If we have a control group (for example treatment "X" is "without any fertilizer", then we assume that the values of X are in some way the best approximation for μ , therefore we can choose $A_1 = 0$ is spite of condition (0.2).

STEP 1: complete the first table.

For the *treatment means* it is enough to calculate the mean of the values

$$Mean_X = \frac{1+2+2}{3} = 1.667$$
$$Mean_Y = \frac{5+6+5}{3} = 5.333$$
$$Mean_Z = \frac{1+2}{2} = 1.5$$

¹We DO NOT find "the correct value" for the A_i

We WILL NOT find *which* factor (treatment) has an effect, we just look if in general treatments has effect on the results.

The (estimated) overall mean ($\hat{\mu}$, which is an estimation of the exact, unknown overall mean μ) is calculated as follows²:

$$\hat{\mu} = \frac{1+2+2+5+6+5+2+1}{8} = 3$$

The estimated effects \hat{A}_i are the difference between the "estimated treatment mean" and the "estimated overall mean", i.e.

$$\hat{A}_i = Mean_i - \hat{\mu}$$

 So

$$\hat{A}_1 = 1.667 - 3 = -1.333$$

 $\hat{A}_2 = 5.333 - 3 = 2.333$
 $\hat{A}_3 = 1.5 - 3 = -1.5$

Then:

Treatment	Measures			Mean	\hat{A}_i
Х	1	2	2	1.667	-1.333
Υ	5	6	5	5.333	2.333
Z	2	1		1.5	-1.5
Overall mean			//	3	1

STEP 2: The ANOVA table.

Cause of					
the variation	df	\mathbf{SS}	MS	\mathbf{F}	F^{Krit}
Treatment					
Residuals					
Total		•••			

For the *column df* (*degrees of freedom*) just remember the rule "minus one":

We have 3 different Treatments $\Rightarrow df_{treat} = 3 - 1 = 2$ We have 8 different measurements $\Rightarrow df_{tot} = 8 - 1 = 7$ $df_{treat} + df_{res} = df_{tot} \Rightarrow df_{res} = 7 - 2 = 5$

For the *column SS* (sum of squares) we can proceed as follows:

²Remark that the overall mean does not necessary coincide with the mean of the $y_{i.}!$

 $SS_{treat} = \text{"sum of squares between treatment groups"}$ $= \sum \hat{A}_i^2 \cdot \#measures$ $= (-1.33)^2 \cdot 3 + (2.33)^2 \cdot 3 + (1.5)^2 \cdot 2 = 26.17$

$$SS_{res} = "sum of squares within treatment groups"$$

= $\sum_{i} \sum_{j} (y_{ij} - y_{i.})^2 = \sum_{i} SS_{row_i}$
= $[(1 - 1.667)^2 + (2 - 1.667)^2 + (2 - 1.667)^2] + [0.667] + [0.5]$
= 1.83

$$SS_{tot} = \text{"Total sum of squares"} \\ = \sum_{i,j} (y_{ij} - \hat{\mu})^2 \\ = (1-3)^2 + (2-3)^2 + \ldots + (1-3)^2 = 28$$

Remark 2 The total "SS" is always equal to the sum of the other "SS"!

$$SS_{tot} = SS_{treat} + SS_{res}$$
$$28 = 26.17 + 1.83$$

For the column MS (mean square) just remember the rule MS = SS/df, then:

$$MS_{treat} = \frac{SS_{treat}}{df_{treat}} = \frac{26.17}{2} = 13.08$$
$$MS_{res} = \frac{SS_{res}}{df_{res}} = \frac{1.83}{5} = 0.37$$

The *F-value* is just given by:

$$F = \frac{MS_{treat}}{MS_{res}} = \frac{13.08}{0.37} = 35.68$$

Interpretation:

The F-value says us how far away we are from the hypothesis "we can not distinguish between error and treatment", i.e. "Treatment is not relevant according to our data"!

A big F-value implies that the effect of the treatment is relevant!

Remark 3 A small F-value does NOT imply that the hypothesis $A_i = 0 \forall i$ is true. (We just can not conclude that it is false!)

STEP 3: The decision:

Similar as for a T-test we calculate the critical value for the level $\alpha = 5\%$ with degrees of freedom 2 and 5 (just read off the values from the appropriate table)³.

$$\alpha = 5\% \Rightarrow F_{2.5}^{krit}(5\%) = 5.79$$

We have calculated $F = 35.68 > F_{2,5}^{krit}(5\%)$. Consequently we REJECT THE HYPOTHESIS $A_1 = A_2 = A_3 = 0!!!$ Similarly we could obtain the same result by calculating the p - value

$$p = 0.11\% \quad \Leftarrow \quad F_{2,5}(p) = 35.68$$

0.11% is less than 5%.

Consequently we reject the hypothesis $A_1 = A_2 = A_3 = 0!!!$

Calculations with R

STEP 0: Insert the data

```
v <- c(1,2,2,5,6,5,2,1)
TR <- c(1,1,1,2,2,2,3,3)
d <- data.frame(v,TR)
d$TR <- as.factor(d$TR)</pre>
```

Interpretation:

- All the measurements have to be in the same vector (v in this case).
- For every factor (in this case just TR) we construct a vector, which can be interpreted as follows: the first three Values of the vector v belong to treatment 1 (X), the two last components to treatment 3 (Z) and the other 3 to treatment 2 (Y).
- WE know that v and TR belong to the same set of data, WE have to tell this even the PC! Therefore: d <- data.frame(v,TR)!
- WE know that the factor TR in the data set d is a factor, the PC doesn't! Therefore: d\$TR <- as.factor(d\$TR)!
- check with str(d) that d\$v is a vector of numbers (num) and d\$TR is a factor (Factor)

³Because F is obtained by MS_{treat} (2 deg of freedom) and MS_{res} (5 deg of freedom), we calculate $F_{2,5}^{krit}(5\%)$.

```
> str(d)
'data.frame': 8 obs. of 2 variables:
$ v : num 1 2 2 5 6 5 2 1
$ TR: Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 3 3
```

STEP 1: Do the ANOVA table

```
d.fit <- aov(v~TR,data=d)
summary(d.fit)</pre>
```

Interpretation:

- Makes an ANOVA table of the data set d, analysing if the factor TR has a significant effect on v.
- The function summary shows the ANOVA table.

STEP 2: Decision:

Interpretation:

- Exactly the same as for the "by hand" calculated table
- With R we do not have the critical values to a level, but we have the *P*-value (PR(>F)).

PR(>F)=0.1097%, this means: if we choose a level a of 0.1%, we can not reject the Null-Hypothesis, by choosing a level $\alpha = 0.11\%$ or bigger we have to reject $H_0!$ (Usually we choose $a = 5\% \Rightarrow H_0$ will be rejected!)