Solution to Series 6

1. Collinearity and variable selection: In a study about infection risk controlling in US hospitals a random sample from 113 hospitals contains the following variables:

id	randomly assigned ID of the hospital
length	average duration of hospital stay (in days)
age	average age of patients (in years)
inf	averaged infection risk (in percent)
cult	number of cultures per non-symptomatic patient x 100
xray	number of X-rays per non-symptomatic patient x 100
beds	number of beds
school	university hospital $1=$ yes $0=$ no
region	geographical region $1=$ NE $2=\mathrm{N} 3=\mathrm{S} 4=\mathrm{W}$
pat mittl.	average number of patients a day
nurs mittl.	number of full-employed, trained nurses
serv	percentage of available services from a fixed list of 35 references

Read in the data from: http://stat.ethz.ch/Teaching/Datasets/senic.dat. Since some observations span more than a single line, you have to use scan() to read the file into R:

```
senic <-scan("http://stat.ethz.ch/Teaching/Datasets/senic.dat",
    what=list (id=0, length=0, age=0, inf=0, cult=0, xray=0,beds=0, school=0,
    region=0,pat=0,nurs=0, serv=0))}
```

Using senic <- data.frame (senic) ; senic <- senic [,-1] you turn the object into a user friendly data frame structure. Turn the variables school and region into so-called factor variables.

```
> senic <-scan("http://stat.ethz.ch/Teaching/Datasets/senic.dat",
    what=list(id=0,length=0, age=0,inf=0, cult=0, xray=0,
    beds=0, school=0, region=0, pat=0, nurs=0, serv=0))
> senic <- data.frame(senic)
> senic <- senic[ ,-1]
> senic$school <- factor(senic$school)
> attach(senic)
```

a) Check the correlation between these (not transformed) variables. Which variables are problematic and why? Suggest a combination of variables to improve the situation.
Checking the correlations:

```
> my.senic.O0 <- senic[,c("length", "age", "inf", "region", "beds", "pat", "nurs")]
> cor(my.senic.00[,-c(1,4)])
\begin{tabular}{lrrrr} 
& age & inf & beds & pat \\
age & 1.000000000 & -0.006266807 & -0.05882316 & -0.05477467 \\
inf & -0.006266807 & 1.000000000 & 0.36917855 & 0.39070521 \\
beds & -0.058823160 & 0.369178549 & 1.00000000 & 0.98099774 \\
pat & -0.054774667 & 0.390705214 & 0.98099774 & 1.00000000 \\
nurs & -0.082944616 & 0.402911390 & 0.91550415 & 0.90789698
\end{tabular}
                nurs
age -0.08294462
inf 0.40291139
beds 0.91550415
pat 0.90789698
nurs 1.00000000
```

Graphical illustration:

```
> library(ellipse)
> plotcorr(cor(my.senic.00[,-c(1,4)]))
```


We can see that beds, pat and nurs are strongly correlated. These are all variables mainly describing the size of the hospital. For our goal it would be best to only include pat. However, for modelling workload we can include the coefficient pat/beds and for the human resource situation the coefficient pat/nurs.
New data set:

```
> my.senic.01 <- data.frame(length, age, inf, region, pat,
    pat.bed=pat/beds, pat.nurs=pat/nurs)
> cor(my.senic.01[,-c(1,4)])
\begin{tabular}{lrrrr} 
& age & inf & pat & pat.bed \\
age & 1.000000000 & -0.006266807 & -0.05477467 & -0.1096058 \\
inf & -0.006266807 & 1.000000000 & 0.39070521 & 0.2897338 \\
pat & -0.054774667 & 0.390705214 & 1.00000000 & 0.4151079 \\
pat.bed & -0.109605797 & 0.289733778 & 0.41510791 & 1.0000000 \\
pat.nurs & 0.026954588 & -0.285984796 & 0.05659985 & 0.2289331 \\
& pat.nurs & & & \\
age & 0.02695459 & & \\
inf & -0.28598480 & & \\
pat & 0.05659985 & & \\
pat.bed & 0.22893307 & & & \\
pat.nurs & 1.00000000 & & &
\end{tabular}
```

Checking correlations:
$>\quad \operatorname{plotcorr}(\operatorname{cor}(m y . \operatorname{senic} .01[,-c(1,4)]))$

The correla-
tions were strongly reduced. Now we check whether any transformations are necessary.
b) Perform the necessary transformations on the predictors and the response. Will there transformations be necessary for the above combinations as well?

```
> detach(senic)
> attach(my.senic.01)
> par(mfrow=c(2,2))
> hist(length)
> hist(log(length))
> hist(age)
> hist(inf)
```


Conclusion: it might be necessary to transform the response which is the average duration of the hospital stay (continuous, not a number) and exhibits a right-skewed pattern. This suggests a log-transformation. Since we cannot be completely sure, we will check both variants.
The same goes for pat. The predictor inf is a percentage - we resign from transforming it because the range of values is rather narrow, the effect would be small.
Adjust model:

```
> fit00 <- lm(length ~ age + inf + region + log(pat) + pat.bed +
    pat.nurs, data=my.senic.01)
> summary(fit00)
Call:
lm(formula = length ~ age + inf + region + log(pat) + pat.bed +
    pat.nurs, data = my.senic.01)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-2.1678 & -0.7796 & -0.2046 & 0.4949 & 6.4366
\end{tabular}
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	-0.36509	1.93496	-0.189	0.85070	
age	0.09310	0.02779	3.350	$0.00112 \quad * *$	
inf	0.56247	0.11309	4.974	$2.55 \mathrm{e}-06 \quad * * *$	
region	-0.63979	0.12780	-5.006	$2.22 \mathrm{e}-06 \quad * * *$	
log (pat)	0.47864	0.19617	2.440	$0.01635 \quad *$	
pat.bed	1.57915	1.34715	1.172	0.24374	
pat.nurs	0.50526	0.25869	1.953	$0.05344 \quad$.	

Signif. codes: 0
> $\quad \operatorname{par}(\mathrm{mfrow}=c(2,2))$
> plot(fit00)

Checking the Tukey-Anscombe plot we can see that the model contains strong structural deficits. These are also visible in the normal Q-Q plot and the scale-location plot. Therefore, we use the log-transformation also on the response.
c) Find a good model! To that end, analyze the residuals, identify possible problematic observations. Decide also upon which variables to use in the model and which to remove.
Adjust model:

```
> fit01 <- lm(log(length) ~ age + inf + region + log(pat) + pat.bed +
    pat.nurs, data=my.senic.01)
> summary(fit01)
Call:
lm(formula = log(length) ~ age + inf + region + log(pat) + pat.bed +
    pat.nurs, data = my.senic.01)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-0.21560 & -0.07203 & -0.01017 & 0.06320 & 0.40182
\end{tabular}
```

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|t\|)$			
(Intercept)	1.347676	0.173938	7.748	$5.93 e-12$	$* * *$
age	0.008116	0.002498	3.249	0.00155	$* *$
inf	0.050698	0.010166	4.987	$2.41 e-06$	$* * *$
region	-0.063755	0.011488	-5.550	$2.13 e-07$	$* * *$
log(pat)	0.050152	0.017634	2.844	0.00535	$* *$
pat.bed	0.152480	0.121098	1.259	0.21074	

```
pat.nurs 0.034479 0.023254 1.483 0.14111
```

Signif. codes: 0

```
> par(mfrow=c(2,2))
> plot(fit01)
```


This model still is far from optimal. There are three influential points, i.e., 47, 112 (outliers) and 107 (leverage point). We remove them and check whether we get a better fit.

```
> my.senic.02 <- my.senic.01[-c(47,107,112),]
> fit02 <- lm(log(length) ~ age + inf + region + log(pat) + pat.bed +
    pat.nurs, data=my.senic.02)
> summary(fit02)
Call:
lm(formula = log(length) ~ age + inf + region + log(pat) + pat.bed +
    pat.nurs, data = my.senic.02)
```

Residuals:

Min	1Q	Median	3Q	Max
-0.211494	-0.061278	-0.001207	0.063051	0.306647

Coefficients:

| | Estimate | Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$ | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 1.523390 | 0.158350 | 9.620 | $5.17 \mathrm{e}-16 * * *$ |
| age | 0.005812 | 0.002256 | 2.577 | $0.01139 *$ |
| inf | 0.044946 | 0.009148 | 4.913 | $3.38 \mathrm{e}-06 * * *$ |
| region | -0.057023 | 0.010271 | -5.552 | $2.21 \mathrm{e}-07{ }^{* * *}$ |
| log(pat) | 0.044893 | 0.015786 | 2.844 | $0.00538 * *$ |
| pat.bed | 0.094130 | 0.108183 | 0.870 | 0.38627 |

```
pat.nurs 0.051482 0.027029 1.905 0.05960.
```

Signif. codes: 0
> anova(fit02)
Analysis of Variance Table
Response: log(length)
$\left.\begin{array}{lrrlrr} & \text { Df } & \text { Sum Sq Mean Sq F value } & \operatorname{Pr}(>F) \\ \text { age } & 1 & 0.02926 & 0.02926 & 2.7576 & 0.0998372\end{array}\right)$.

Signif. codes: 0
> $\quad \operatorname{par}$ (mfrow=c $(2,2)$)
> plot(fit02)

Fitted values
Scale-Location

Fitted values

Theoretical Quantiles Residuals vs Leverage

Leverage
> library(car)
> crPlots(fit02)

The fit has improved but is still not perfect. Unfortunately we lack the means for further improvement.
The analysis of the partial residual plots shows a nonlinear influence of the variable age. Until the age of 55 the duration of the hospital stay seems not to increase with age, afterwards it raises markedly.
From the summary we can see that not all predictors are significant. The task of reducing the model to the necessary predictors is subject of part d), e) and f). The corresponding solution will be given then.
d) Perform a backward elimination using the AIC criterion. Use the function step(). Check the final model with the usual diagnostic plots.
Backward elimination:

```
> fit.back <- lm(log(length) ~ age + inf + region + log(pat) + pat.bed + pat.nurs, data=my.sen
```

> fit. B <- step(fit.back, direction="backward")
Start: AIC=-493.27
$\log (l e n g t h) \sim$ age $+i n f+$ region $+\log (p a t)+$ pat.bed + pat.nurs
Df Sum of Sq RSS AIC

- pat.bed 10.008031 .1011 -494.46
<none> $\quad 1.0931$-493.27
- pat.nurs $10.038501 .1316-491.46$
- age $110.070461 .1635-488.39$
- $\log (p a t) 10.085831 .1789-486.95$
$\begin{array}{lllll}- \text { inf } & 1 & 0.25619 & 1.3492 & -472.10\end{array}$
$\begin{array}{llllll}\text { - region } & 1 & 0.32710 & 1.4202 & -466.47\end{array}$
Step: AIC=-494.46
$\log (l e n g t h) \sim$ age $+i n f+$ region $+\log (p a t)+$ pat.nurs

```
    Df Sum of Sq RSS AIC
<none> 1.1011 -494.46
- pat.nurs 1 0.05106 1.1521 -491.47
- age 1 0.06654 1.1676 -490.01
- log(pat) 1 0.12830 1.2294 -484.34
- inf 1}00.27114 1.3722 -472.2
- region 1 0.36421 1.4653-465.03
> summary(fit.B)
Call:
lm(formula = log(length) ~ age + inf + region + log(pat) + pat.nurs,
    data = my.senic.02)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-0.202879 & -0.064849 & -0.006766 & 0.067493 & 0.306311
\end{tabular}
Coefficients:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Estimate & Std. Error & t value & & \\
\hline (Intercept) & 1.568858 & 0.149304 & 10.508 & < 2e-16 & \\
\hline age & 0.005622 & 0.002242 & 2.507 & 0.013723 & \\
\hline & 0.045903 & 0.009071 & 5.061 & \(1.81 \mathrm{e}-06\) & \\
\hline gion & -0.058870 & 0.010037 & -5.865 & \(5.37 \mathrm{e}-08\) & \\
\hline og(pat) & 0.050358 & 0.014466 & 3.481 & . 000731 & \\
\hline pat.nurs & 0.057388 & 0.026132 & 2.196 & . 030 & \\
\hline
\end{tabular}
Signif. codes: 0
The backward elimination only removes the variable pat.bed from the model.
```

```
> par(mfrow=c(2,2))
```

> par(mfrow=c(2,2))
> plot(fit.B)

```
> plot(fit.B)
```


e) Now perform a forward selection using the AIC criterion. Thus, start with the empty model, i.e.: fit.for $<-\operatorname{lm}(\log$ (length) ~ 1, data=...)
Use the same function as before. Check also the diagnostic plots and comment on the differences to d).
Forward selection:

```
> fit.for <- lm(log(length) ~ 1, data=my.senic.02)
> scp <- list(lower= 1, upper=~age + inf + region + log(pat) + pat.bed + pat.nurs)
> fit.F <- step(fit.for, scope=scp, direction="forward")
Start: AIC=-413.07
log(length) ~ 1
    Df Sum of Sq RSS AIC
+ inf 1 0.69419 1.8329 -446.40
+ region 1 0.63749 1.8896 -443.05
+ log(pat) 1 0.62198 1.9051 -442.15
+ pat.bed 1 0.42539 2.1017 -431.35
<none> 2.5271 -413.07
+ age 1 0.02926 2.4979 -412.35
+ pat.nurs 1 0.02725 2.4999 -412.27
Step: AIC=-446.4
log(length) ~ inf
    Df Sum of Sq RSS AIC
+ region 1 0.46482 1.3681 -476.57
+ log(pat) 1 0.21093 1.6220 -457.85
+ pat.bed 1 0.19266 1.6403 -456.62
```

```
+ pat.nurs 1 0.14782 1.6851 -453.65
+ age 1 0.04324 1.7897 -447.03
<none> 1.8329 -446.40
Step: AIC=-476.57
log(length) ~ inf + region
\begin{tabular}{lrrrr} 
& Df & Sum of Sq & RSS & AIC \\
+ log(pat) & 1 & 0.141710 & 1.2264 & -486.60 \\
+ pat.nurs & 1 & 0.098574 & 1.2695 & -482.80 \\
+ pat.bed & 1 & 0.076908 & 1.2912 & -480.94 \\
+ age & 1 & 0.043682 & 1.3244 & -478.14 \\
<none> & & & 1.3681 & -476.57
\end{tabular}
Step: AIC=-486.6
log(length) ~ inf + region + log(pat)
    Df Sum of Sq RSS AIC
+ age 1 0.074270 1.1521 -491.47
+ pat.nurs 1 0.058787 1.1676 -490.01
<none> 1.2264 -486.60
+ pat.bed 1 0.014786 1.2116 -485.94
Step: AIC=-491.47
log(length) ~ inf + region + log(pat) + age
    Df Sum of Sq RSS AIC
+ pat.nurs 1 0.051061 1.1011 -494.46
<none> 1.1521 -491.47
+ pat.bed 1 0.020594 1.1316 -491.46
Step: AIC=-494.46
log(length) ~ inf + region + log(pat) + age + pat.nurs
        Df Sum of Sq RSS AIC
<none> 1.1011 -494.46
+ pat.bed 1 0.0080341 1.0931 -493.27
> summary(fit.F)
Call:
lm(formula = log(length) ~ inf + region + log(pat) + age + pat.nurs,
    data = my.senic.02)
Residuals:
        Min 1Q Median 3Q Max
-0.202879 -0.064849 -0.006766 0.067493 0.306311
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{lrrrrl} 
(Intercept) & 1.568858 & 0.149304 & 10.508 & \(<2 e-16\) & \(* * *\) \\
inf & 0.045903 & 0.009071 & 5.061 & \(1.81 \mathrm{e}-06\) & \(* * *\) \\
region & -0.058870 & 0.010037 & -5.865 & \(5.37 \mathrm{e}-08\) & \(* * *\) \\
log(pat) & 0.050358 & 0.014466 & 3.481 & \(0.000731^{* * *}\) \\
age & 0.005622 & 0.002242 & 2.507 & \(0.013723^{*}\) \\
pat.nurs & 0.057388 & 0.026132 & 2.196 & \(0.030307{ }^{*}\)
\end{tabular}
---
Signif. codes: 0
We get the same result as before.
```

```
> par(mfrow=c(2,2))
```

> par(mfrow=c(2,2))
> plot(fit.F)

```

f) Optional: Perform a stepwise selection. Start with the full model as well as with empty model and compare the results. Check the help file of step() on how to perform a stepwise selection. The stepwise selection gives the same result whether we are using the full model or the empty model as starting point:
```

> step(fit.back, direction="both")
Start: AIC=-493.27
log(length) ~ age + inf + region + log(pat) + pat.bed + pat.nurs

	Df	Sum of Sq	RSS	AIC
- pat.bed	1	0.00803	1.1011	-494.46
<none>			1.0931	-493.27
- pat.nurs	1	0.03850	1.1316	-491.46
- age	1	0.07046	1.1635	-488.39
- log(pat)	1	0.08583	1.1789	-486.95
- inf	1	0.25619	1.3492	-472.10
- region	1	0.32710	1.4202	-466.47

```
\begin{tabular}{|c|c|c|c|c|}
\hline & Df & Sum of Sq & RSS & AIC \\
\hline <none> & & & 1.1011 & -494.46 \\
\hline + pat.bed & 1 & 0.00803 & 1.0931 & -493.27 \\
\hline - pat.nurs & 1 & 0.05106 & 1.1521 & -491.47 \\
\hline - age & 1 & 0.06654 & 1.1676 & -490.01 \\
\hline - log(pat) & 1 & 0.12830 & 1.2294 & -484.34 \\
\hline - inf & 1 & 0.27114 & 1.3722 & -472.25 \\
\hline - region & 1 & 0.36421 & 1.4653 & -465.03 \\
\hline
\end{tabular}
```

Call:
lm(formula = log(length) ~ age + inf + region + log(pat) + pat.nurs,
data = my.senic.02)
Coefficients:
(Intercept) age inf region
1.568858 0.005622 0.045903 -0.058870
log(pat) pat.nurs
0.050358 0.057388
> step(fit.for, scope=scp, direction="both")
Start: AIC=-413.07
log(length) ~ 1
Df Sum of Sq RSS AIC

+ inf 1 0.69419 1.8329 -446.40
+ region 1 0.63749 1.8896 -443.05
+ log(pat) 1 0.62198 1.9051 -442.15
+ pat.bed 1 0.42539 2.1017 -431.35
<none> 2.5271 -413.07
+ age 1 0.02926 2.4979 -412.35
+ pat.nurs 1 0.02725 2.4999 -412.27
Step: AIC=-446.4
log(length) ~ inf
Df Sum of Sq RSS AIC
+ region 1 0.46482 1.3681 -476.57
+ log(pat) 1 0.21093 1.6220-457.85
+ pat.bed 1 0.19266 1.6403 -456.62
+ pat.nurs 1 0.14782 1.6851 -453.65
+ age 1 0.04324 1.7897 -447.03
<none> 1.8329 -446.40
- inf 1 0.69419 2.5271 -413.07
Step: AIC=-476.57
log(length) ~ inf + region
Df Sum of Sq RSS AIC
+ log(pat) 1 0.14171 1.2264 -486.60
+ pat.nurs 1 0.09857 1.2695 -482.80
+ pat.bed 1 0.07691 1.2912 -480.94
+ age 1 0.04368 1.3244 -478.14
<none> 1.3681 -476.57
- region 1 0.46482 1.8329 -446.40
- inf 1 0.52151 1.8896 -443.05
Step: AIC=-486.6
log(length) ~ inf + region + log(pat)
Df Sum of Sq RSS AIC
+ age 1 0.07427 1.1521 -491.47
+ pat.nurs 1 0.05879 1.1676 -490.01
<none> 1.2264 -486.60
+ pat.bed 1 0.01479 1.2116 -485.94
- log(pat) 1 0.14171 1.3681 -476.57
- inf 1 0.23225 1.4587-469.53
- region 1 0.39560 1.6220-457.85

```
```

Step: AIC=-491.47
log(length) ~ inf + region + log(pat) + age
Df Sum of Sq RSS AIC

+ pat.nurs 1 0.05106 1.1011 -494.46
<none> 1.1521 -491.47
+ pat.bed 1 0.02059 1.1316 -491.46
- age 1}00.07427 1.2264 -486.60
- log(pat) 1 0.17230 1.3244 -478.14
- inf 1 0.22372 1.3759 -473.95
- region 1 0.38905 1.5412 -461.47
Step: AIC=-494.46
log(length) ~ inf + region + log(pat) + age + pat.nurs
Df Sum of Sq RSS AIC
<none> 1.1011 -494.46
+ pat.bed 1 0.00803 1.0931 -493.27
- pat.nurs 1 0.05106 1.1521 -491.47
- age 1 0.06654 1.1676 -490.01
- log(pat) 1 0.12830 1.2294 -484.34
- inf 1 0.27114 1.3722 -472.25
- region 1 0.36421 1.4653-465.03
Call:
lm(formula = log(length) ~ inf + region + log(pat) + age + pat.nurs,
data = my.senic.02)
Coefficients:

(Intercept)	inf	region	\log (pat)
1.568858	0.045903	-0.058870	0.050358
age	pat.nurs		
0.005622	0.057388		

```
2. Cross validation: The goal of this exercise is to make you acquainted with the cross-validation technique. Use the data set data(houseprices) from the package library (DAAG).
> head(houseprices)
\begin{tabular}{lrrr}
\multicolumn{4}{c}{ area bedrooms sale.price } \\
9 & 694 & 4 & 192.0 \\
10 & 905 & 4 & 215.0 \\
11 & 802 & 4 & 215.0 \\
12 & 1366 & 4 & 274.0 \\
13 & 716 & 4 & 112.7 \\
14 & 963 & 4 & 185.0
\end{tabular}
a) Perform a leave-one-out cross validation for the model containing both predictors as main effects: sale.price \(\sim\) area + bedrooms
Is there a better model to predict the sale price? What other models are possible anyway? R hint: Use the R-function CVlm() from library (DAAG).
Main effects model including cross validation:
```

> fit00 <- lm(sale.price ~ area + bedrooms, data=houseprices)
> summary(fit00)
Call:
lm(formula = sale.price ~ area + bedrooms, data = houseprices)
Residuals:

Min	$1 Q$	Median	3Q	Max
-80.897	-4.247	1.539	13.249	42.027

Coefficients:
Estimate Std. Error t value Pr}(>|t|
(Intercept) -141.76132 67.87204 -2.089 0.05872 .
area 0.14255 0.04697 3.035 0.01038*
bedrooms 58.32375 14.75962 3.952 0.00192 **
Signif. codes: 0
> par(mfrow=c(2,2))
> plot(fit00)

```



Now we can compare this model with the two other models containing each only one predictor: pdf

2
> CVlm(houseprices, sale.price ~ area , m=15)
> OverallMS
Overall ms
3247

pdf
2
> CVlm(houseprices, sale.price ~ bedrooms, \(m=15\) )
> OverallMS
Overall ms
2023


Both single-predictor models are considerably worse: The mean squared prediction error raises from 1188 to 2023 resp. 3247. Next we could try the model including an interaction:
pdf
2
> CVlm(houseprices, sale.price ~ area * bedrooms, m=15)
> OverallMS
Overall ms
1336


The mean squared prediction error is 1336. Therefore, the main-effects model is the "best" model for this prediction.
b) Optional exercise for advanced users: Instead of using the function CVlm (data, formula, fold.number, ...) you could also perform the cross validation "by hand" using a for-loop. "By hand" cross validation:
```

> oos.pred <- c()
> dat <- houseprices
> for (i in 1:nrow(dat))
{
\#\# Reduce the data-set: exclude the i-th observation
dat.red <- dat[-i,]
\#\# Fit a regession on the smaller data-set
fit.red <- lm(sale.price ~ area + bedrooms, data=dat.red)
\#\# Predict the i-th observation
oos.pred[i] <- predict(fit.red, newdata=dat[i,])
}
> \#\# compute the mean square prediction error
> mean((houseprices\$sale.price-oos.pred)^2)
[1] }118

```

We get 1188, as with the function CVlm from above.```

