Solution to Series 4

1. a) Read in the data and look at the data, do you see any problems? Make sure that all the variables are in the correct R data type.
> sexab <- read.csv("http://stat.ethz.ch/Teaching/Datasets/abuse.csv",header=TRUE)
> attach (sexab)
Look at the data:
> pairs (sexab)

> hist(cpa)
Histogram of cpa

> hist(ptsd)

Histogram of ptsd

No data problems. No transformations necessary.
b) Use scatter plots and box plots to display the variable ptsd in dependence of the variables csa and cpa. Box plot of ptsd vs. csa:
> boxplot(ptsd ~ csa, ylab="ptsd", main="Stress vs. Sexual Abuse")
Stress vs. Sexual Abuse

Scatter plot of ptsd vs. cpa:
> plot(ptsd ~ cpa, ylab="ptsd", main="Stress vs. Physical Abuse", pch=19)

Stress vs. Physical Abuse

This scatter plot could be misleading. The fact that we plot both groups of woman in one plot could indicate a bigger dependence of ptsd and cpa as there really is.
c) Make a scatter plot of ptsd against cpa. Use different symbols for abused and non-abused woman.

R-hint:
plot(cpa, ptsd, type="n")
text(cpa, ptsd, labels=substring(csa,1,1))
Scatter plot with different symbols for the different groups.
> plot(ptsd ~ cpa, ylab="ptsd", main="Stress vs. Physical + Sexual Abuse", type="n")
> text(cpa, ptsd, labels=substring(csa, 1, 1))
Stress vs. Physical + Sexual Abuse

[^0]Stress vs. Physical + Sexual Abuse

From this plots we see that the dependence between ptsd and cpa is not that big. But the two groups differ much concerning the stress-level. We now do a coherent analysis via quantitative methods.
d) Carry out a test in order to see if sexual abused woman have a higher PTSD-score. Why doesn't this test give you a complete answer? Hint: Look at the scatter plot from part c.).

```
> t.test(ptsd ~ csa, paired=FALSE, var.equal=TRUE)
    Two Sample t-test
data: ptsd by csa
t = 8.9387, df = 74, p-value = 2.172e-13
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    5.630165 8.860273
sample estimates:
    mean in group Abused mean in group NotAbused
        11.941093 4.695874
```

The null-hypothesis gets rejected. This shows us that there is a statistically significant difference in stress-level between the two groups of woman. But what's with the factor physical abuse. We suggest that also the factor physical abuse has a influence on the stress-level. That is, we have to take both variables in to account at the same time. For that we fit a linear regression model.
e) Fit a regression model to the data with both predictors and their interaction. What do the resulting coefficients mean?

```
> fit.interact <- lm(ptsd ~ cpa * csa, data=sexab)
> summary(fit.interact)
Call:
lm(formula = ptsd ~ cpa * csa, data = sexab)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-8.1999 & -2.5313 & -0.1807 & 2.7744 & 6.9748
\end{tabular}
```

Coefficients:

| | Estimate | Std. Error t value $\operatorname{Pr}(>\|t\|)$ | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 10.5571 | 0.8063 | 13.094 | $<2 \mathrm{e}-16 * * *$ |
| cpa | 0.4500 | 0.2085 | 2.159 | $0.0342 *$ |
| csaNotAbused | -6.8612 | 1.0747 | -6.384 | $1.48 \mathrm{e}-08 * * *$ |
| cpa:csaNotAbused | 0.3140 | 0.3685 | 0.852 | 0.3970 |

Signif. codes: 0
> qqnorm(fit.interact\$resid)
Normal Q-Q Plot

Theoretical Quantiles

```
> plot(fit.interact$fitted,fit.interact$resid,xlab="fitted values",ylab="residuals")
```

> abline ($h=0,1 t y=2$)

2. a) Get an overview of the data and account for possible problems. Which of the variables need to be transformed or not?
Overview over the data:

```
> mortality <- read.csv("http://stat.ethz.ch/Teaching/Datasets/mortality.csv",
                                    header=TRUE)
> attach(mortality)
> summary(mortality)
```

	City		Mortality
Akron, OH	$:$	1	Min. $: 790.7$
Albany-Schenectady-Troy, NY:	1	1st Qu. : 899.4	
Allentown, Bethlehem, PA-NJ $:$	1	Median : 946.2	
Atlanta, GA	$:$	1	Mean $: 941.2$
Baltimore, MD	$:$	1	3rd Qu.: 984.1

Birmingham, AL (Other)		Max.
JanTemp	JulyTemp	RelHum
Min. :12.0	Min. 663.00	Min. :38.00
1st Qu.:27.0	1st Qu.:72.00	1st Qu.:55.50
Median :31.0	Median :74.00	Median :57.00
Mean :33.8	Mean :74.41	Mean :57.75
3rd Qu.:39.5	3rd Qu.:77.00	3rd Qu.:60.00
Max. :67.0	Max. :85.00	Max. :73.00

Rain		Educ		Dens	
Min. $\quad: 10.00$	Min. $\quad: 9.00$	Min. $: 1441$			
1st Qu. $: 33.50$	1st Qu. $: 10.40$	1st Qu. $: 3138$			
Median $: 38.00$	Median $: 11.00$	Median $: 3626$			
Mean $\quad: 38.51$	Mean $: 10.97$	Mean $: 3910$			
3rd Qu. $: 44.00$	3rd Qu.:11.50	3rd Qu.:			
Max. $\quad: 65.00$	Max. $: 12.30$	Max. $: 9699$			

NonWhite		WhiteCollar		Pop	
Min. $\quad: 0.80$	Min. $: 33.80$	Min. $: 124833$			
1st Qu.: 4.90	1st Qu.: 43.40	1st Qu.: 566515			
Median $: 9.50$	Median $: 45.50$	Median $: 914427$			
Mean $: 11.88$	Mean $: 46.39$	Mean $: 1438037$			
3rd Qu. $: 15.70$	3rd Qu. $: 49.90$	3rd Qu.: 1717201			
Max. $\quad: 38.50$	Max. $: 62.20$	Max. $: 8274961$			

House	Income	HC
Min. $: 2.650$	Min. :25782	Min. : 1.00
1st Qu.:3.210	1st Qu.:30004	1st Qu.: 7.00
Median :3.270	Median :32452	Median : 15.00
Mean :3.247	Mean :33247	Mean : 38.47
3rd Qu.:3.360	3rd Qu.:35496	3rd Qu.: 30.50
Max. 3.530	Max. : 47966	Max. 6648.

NOx
SO2
Min. : 1.00 Min. : 1.00
1st Qu.: 4.00 1st Qu.: 13.00
Median : 9.00 Median : 32.00
Mean : 22.97 Mean : 54.66
3rd Qu.: 24.50 3rd Qu.: 70.00
Max. :319.00 Max. :278.00
> rownames(mortality) <- mortality\$City
> mortality <- mortality[,-1]
We do not see any big data problems. We set city as row names and delete the variable city.
Transformationen:

> par(mfrow=c(3,2))	
> hist(Mortality) \#\# ok, no transformation > hist(JanTemp) \#\# ok, no transformation > hist(JulyTemp) \#\# ok, no transformation > hist(RelHum) \#\# ok, no transformation > hist(Rain) \#\# ok, no transformation > hist(Educ) \#\# ok, no transformation lloll	

Dens

WhiteCollar

Histogram of NonWhite

NonWhite

Histogram of House

[^1]
b) Carry out a multiple linear regression containing all variables. Does the model fit well? Check the residuals.
Full model:
> fit <- lm(Mortality ~ ., data=mortality)
> summary (fit)
Call:
lm(formula = Mortality ~ ., data = mortality)
Residuals:

Min	1Q Median	3Q	Max
-65.08	-25.23	-2.67	23.08
75.70			

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) 1496.4915 572.7205 2.613 0.01224 *

JanTemp	-2.4479	0.8808	-2.779	$0.00798 \quad * *$
JulyTemp	-1.9350	2.0329	-0.952	0.34638
RelHum	0.1065	1.0614	0.100	0.92052
Rain	1.7727	0.5748	3.084	$0.00352 \quad * *$
Educ	-13.3849	8.7561	-1.529	0.13351
Dens	11.9490	16.1836	0.738	0.46423
NonWhite	326.6757	62.9092	5.193	$5.09 \mathrm{e}-06 \quad * * *$
WhiteCollar	-146.3477	112.5510	-1.300	0.20028
Pop	4.8037	7.7245	0.622	0.53723
House	-43.2697	38.9460	-1.111	0.27260
Income	-27.3906	47.8041	-0.573	0.56958
HC	-21.1925	15.1050	-1.403	0.16763
NOx	35.7323	14.3143	2.496	$0.01637 \quad *$
SO2	-5.3995	7.4040	-0.729	0.46970

Signif. codes: 0
> qqnorm(fit\$resid)
Normal Q-Q Plot

Theoretical Quantiles
> plot(fit\$fitted,fit\$resid,xlab="fitted values",ylab="residuals")
> abline ($h=0,1 t y=2$)

This model fits quite well, i.e. the model assumptions are fulfilled. We do not se any violation of the model assumptions.
c) Now take all the non-significant variables out of the model and compute the regression again. Compare your results to the one from part b.).
Now just use the significant variables:

```
> fit.sign <- lm(Mortality ~ JanTemp + Rain + NonWhite + NOx, data=mortality)
> summary(fit.sign)
Call:
lm(formula = Mortality ~ JanTemp + Rain + NonWhite + NOx, data = mortality)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-60.537 & -22.328 & -7.677 & 20.186 & 99.117
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 788.6724 25.8034 30.565 < 2e-16 ***
JanTemp -2.4277 0.5166 -4.699 1.84e-05 ***
Rain 2.4648 0.4692 5.254 2.59e-06 ***
NonWhite 277.1610 40.9045 6.776 9.53e-09 ***
NOx 20.6490 4.5502 4.538 3.21e-05 ***
---
Signif. codes: 0
> qqnorm(fit.sign$resid)
```



```
> plot(fit.sign$fitted,fit.sign$resid,xlab="fitted values",ylab="residuals")
> abline(h=0,lty=2)
```


Now all the variables are highly significant. The error variance is sligtly bigger, R-squared and also adjusted R-squared are smaller compared to the full model. On the oder hand is the p-value of the F-test bigger now.
Even though leaving away all of the non-significant variables worked quite well here, one sould not do that. A better strategie would be to delete the non-significant variables step by step, always deleting the one with the biggest p-value.
d) Start with the full multiple linear model. Remove now step by step the variable with the biggest p-value as long as it is over 0.05 . Compare the result to the one from c.). R-hint: Use the R-function update().
Step by step strategie: Use the function update().

```
> fit.reduc <- fit
> fit.reduc <- update(fit.reduc, ~.-RelHum) ; summary(fit.reduc)
> fit.reduc <- update(fit.reduc, ~.-Income) ; summary(fit.reduc)
> fit.reduc <- update(fit.reduc, ~.-Pop) ; summary(fit.reduc)
> fit.reduc <- update(fit.reduc, ~.-Dens) ; summary(fit.reduc)
> fit.reduc <- update(fit.reduc, ~.-SO2) ; summary(fit.reduc)
> fit.reduc <- update(fit.reduc, ~.-JulyTemp) ; summary(fit.reduc)
> fit.reduc <- update(fit.reduc, ~.-HC) ; summary(fit.reduc)
> fit.reduc <- update(fit.reduc, ~.-House) ; summary(fit.reduc)
> fit.reduc <- update(fit.reduc, ~.-WhiteCollar); summary(fit.reduc)
Call:
lm(formula = Mortality ~ JanTemp + Rain + Educ + NonWhite + NOx,
    data = mortality)
Residuals:
    Min 1Q Median 3Q Max
-83.471 -23.987 4.444 19.880 85.943
Coefficients:
    Estimate Std. Error t value Pr (>|t|)
(Intercept) 992.2069 79.6994 12.449 < 2e-16 ***
JanTemp -2.1304 0.5017 -4.246 8.80e-05 ***
Rain 1.8122 0.5066 3.577 0.000752 ***
Educ -16.4207 6.1202 -2.683 0.009710 **
NonWhite 268.2564 38.8832 6.899 6.56e-09 ***
NOx 18.3230 4.3960 4.168 0.000114 ***
---
Signif. codes: 0
```

Now we stop because all of the remaining variables are significant. The error-variance, R-squared and p-value of the F-test look better then in the model from part c.). Also the residuals are looking good.
e) Again starting from the full model, carry out partial F-tests, in order to answer the question if - all meteo-variables

- all air pollution-variables and
- all demographic-variables
can be removed from the model. Use the R-function anova().
Fitting the model without the meteo-variables:

```
> fit.ohne.meteo <- lm(Mortality ~ .-JanTemp-JulyTemp-RelHum-Rain, data=mortality)
> anova(fit, fit.ohne.meteo)
Analysis of Variance Table
Model 1: Mortality ~ JanTemp + JulyTemp + RelHum + Rain + Educ + Dens +
        NonWhite + WhiteCollar + Pop + House + Income + HC + NOx +
        SO2
Model 2: Mortality ~ (JanTemp + JulyTemp + RelHum + Rain + Educ + Dens +
        NonWhite + WhiteCollar + Pop + House + Income + HC + NOx +
        SO2) - JanTemp - JulyTemp - RelHum - Rain
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 44 51543
2 48 71705 -4 -20162 4.3027 0.005037 **
---
Signif. codes: 0
```

With the function anova() one carrys out a F-test in order to compare the two models. This test is significant, i.e. the null-hypothesis gets rejected. That is, the bigger model, the one with the meteo-variables, is better. So we can not leave away the meteo-variables.
Fitting the model without the air pollution-variables:

```
> fit.ohne.luft <- lm(Mortality ~ .-HC-NOx-SO2, data=mortality)
> anova(fit, fit.ohne.luft)
Analysis of Variance Table
Model 1: Mortality ~ JanTemp + JulyTemp + RelHum + Rain + Educ + Dens +
    NonWhite + WhiteCollar + Pop + House + Income + HC + NOx +
    SO2
Model 2: Mortality ~ (JanTemp + JulyTemp + RelHum + Rain + Educ + Dens +
    NonWhite + WhiteCollar + Pop + House + Income + HC + NOx +
        SO2) - HC - NOx - SO2
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 44 51543
2 47 61244 -3 -9700.8 2.7604 0.0533.
---
Signif. codes: 0
```

The partial F-test is not siginificant. Hence we can take the air pollution-variables out of the model.
Fitting the model without the demographic-variables:

```
> fit.ohne.demografie <- lm(Mortality ~ .-Educ-Dens-NonWhite-WhiteCollar-Pop-House
    -Income, data=mortality)
> anova(fit, fit.ohne.demografie)
Analysis of Variance Table
Model 1: Mortality ~ JanTemp + JulyTemp + RelHum + Rain + Educ + Dens +
    NonWhite + WhiteCollar + Pop + House + Income + HC + NOx +
```


SO2

```
Model 2: Mortality ~ (JanTemp + JulyTemp + RelHum + Rain + Educ + Dens +
        NonWhite + WhiteCollar + Pop + House + Income + HC + NOx +
        SO2) - Educ - Dens - NonWhite - WhiteCollar - Pop - House -
        Income
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 44 51543
2 51 101406 -7 -49863 6.0808 5.369e-05 ***
---
Signif. codes: 0
```

The p-value of the test is very small, that is we can not leave away the demographic-variables.

[^0]: > plot(ptsd ~ cpa, pch=19, col="blue", main="Stress vs. Physical + Sexual Abuse")
 > points(ptsd ~ cpa, pch=19, col="greenyellow", subset=(csa=="Abused"))
 > points(ptsd ~ cpa)
 > legend("bottomright", legend=c("Not Abused", "Abused"),
 pch=19, col=c("blue", "greenyellow"))

[^1]: $>\operatorname{par}(m f r o w=c(2,2))$
 > hist (HC) \#\# strongly right skewed, log-tranformation mandatory
 > hist (NOx) \#\# strongly right skewed, log-tranformation mandatory
 > hist (SO2) \#\# strongly right skewed, log-tranformation mandatory

