Solution to Series 2

1. a) The scatterplot shows a curved relation.
b) N_{t} is the number of surviving bacteria upt to the time point t, hence N_{0} is the starting population. In each interval only a constant proportion b of bacteria survives, where $0<b<1$.
Therefore it follows that
at time point $t=1 \quad N_{1}=b \cdot N_{0}$ bacteria
at time point $t=2 \quad N_{2}=b \cdot N_{1}=b^{2} \cdot N_{0}$ bacteria
$\vdots \quad \vdots$
at time point $t=i \quad N_{i}=b \cdot N_{i-1}=\ldots=b^{i} \cdot N_{0}$ bacteria

$$
\begin{aligned}
N_{i}= & b^{i} \cdot N_{0} \Longleftrightarrow \log \left(N_{i}\right)=i \cdot \log (b)+\log \left(N_{0}\right) \\
& \Longleftrightarrow \underbrace{\log \left(N_{i}\right)}_{y}=\underbrace{\log \left(N_{0}\right)}_{\beta_{0}}+\underbrace{\log (b)}_{\beta_{1}} \cdot \underbrace{i}_{x}
\end{aligned}
$$

The scatterplot of $\log \left(N_{t}\right)$ versus t exhibits a tolerably linear relation.
c) Regression equation $\hat{y}=5.973-0.218 x$

Starting population: $\hat{N}_{0}=e^{5.97316}=393$
Percentaged decrease: $1-\hat{b}=1-e^{-0.218}=0.20$
2. a) R code:
$>\mathrm{x}<-c(0.34,1.38,-0.65,0.68,1.40,-0.88,-0.30,-1.18,0.50,-1.75)$
$>\mathrm{y}<-c(0.27,1.34,-0.53,0.35,1.28,-0.98,-0.72,-0.81,0.64,-1.59)$
$>\operatorname{plot}(x, y)$
b) R code:
$>\bmod 1<-\operatorname{lm}\left(y^{\sim} x\right)$
> abline(mod1)
c) The command abline(mod) draws a straight line with the slope and the axis intercept defined in the object mod. Thus a line with slope c and axis intercept d is drawn in this subtask. Which means the line drawn is described by the equation $x=c y+d$, i.e. plotting x versus y. However we are interested in plotting y versus x. Therefore we first have to solve the equation for y, which yields $y=\frac{x}{c}-\frac{d}{c}$ and then use this equation for drawing a line with slope $\frac{1}{c}$ and axis intercept $\frac{1}{c}$:

R code:

```
> mod2 <- lm(x~y)
> c <- mod2$coefficients[2]
> d <- mod2$coefficients[1]
> abline(a=-d/c,b=1/c,col=2, lty = 2)
```


d) No, the straigth lines do not match. This would only be the case if all points lie exactly on the line. This can be understood as follows:
We want to estimate the regression line $y=\beta_{0}+\beta_{1} x$. As pointed out in the script (paragraph 2.3) it holds that

$$
\begin{aligned}
& \hat{\beta_{0}}=\bar{y}-\hat{\beta_{1}} \bar{x} \\
& \hat{\beta_{1}}=r \frac{s_{y}}{s_{x}}
\end{aligned}
$$

where r is the estimated correlation between x and y (cf. paragraph 2.1 in the script). Thus the regression equation is given by:

$$
y=\left(\bar{y}-r \frac{s_{y}}{s_{x}} \bar{x}\right)+r \frac{s_{y}}{s_{x}} x \Leftrightarrow y-\bar{y}=r \frac{s_{y}}{s_{x}}(x-\bar{x})
$$

The regression from x to y follows similarly:

$$
x=\left(\bar{x}-r \frac{s_{x}}{s_{y}} \bar{y}\right)+r \frac{s_{x}}{s_{y}} y \Leftrightarrow x-\bar{x}=r \frac{s_{x}}{s_{y}}(y-\bar{y})
$$

These two lines match each other, if $r=\frac{1}{r}$, i.e. only if the correlation between x and y is equal to 1 . That is equivalent to the graphical case that x and y lie on the diagonal line.
3. a) The gas consumption is quite constant if the temperature difference is smaller than $14^{\circ} \mathrm{C}$, only if it gets larger the consumption increases. The spread is rather large, which is not surprising since the measurements were performed on different houses.
b) $>\bmod 1<-\operatorname{lm}\left(\right.$ verbrauch ${ }^{\sim}$ temp, data=gas)
$>\bmod 1$
Call:
lm (formula $=$ verbrauch \sim temp, data $=$ gas $)$
Coefficients:
(Intercept)
temp
36.894
3.413
> summary (mod1)
Call:
$\operatorname{lm}(f o r m u l a=$ verbrauch \sim temp, data $=$ gas $)$
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-13.497	-7.391	-2.235	6.280	17.367

Coefficients:

Residual standard error: 9.601 on 13 degrees of freedom
Multiple R-squared: 0.3929, Adjusted R-squared: 0.3462
F-statistic: 8.413 on 1 and 13 DF , p-value: 0.0124
c) The residual plots do not look satisfying, but transformation $(\log , \sqrt{ })$ or a quadratic term seem not to be helpful either.
d) $\hat{y}=36.8937+3.4127 \cdot 14=84.67$
> new.x <- data.frame (temp=14)
> predict(mod1,new.x)
1
84.67202
> predict(mod1,new.x,interval="confidence")
fit lwr upr
184.6720279 .2761890 .06787

