Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, November 1, 2011

Dummy Variables

So far, we only considered continuous predictors:

- temperature
- distance
- pressure
- ...

- ...

It is perfectly valid to have categorical predictors, too:

- sex (male or female)
- status variables (employed or unemployed)
- working shift (day, evening, night)

\rightarrow Implementation in the regression with dummy variables

Example: Binary Categorical Variable

The lathe dataset:

- Y lifetime of a cutting tool in a lathe
- x_1 speed of the machine in rpm
- x_2 tool type A or B

Dummy variable encoding:

$$x_2 = \begin{cases} 0 & tool \ type \ A \\ 1 & tool \ type \ B \end{cases}$$

Interpretation of the Model

\rightarrow see blackboard...

```
> summary(lm(hours ~ rpm + tool, data = lathe))
Coefficients:
```

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	36.98560	3.51038	10.536	7.16e-09	* * *
rpm	-0.02661	0.00452	-5.887	1.79e-05	* * *
toolB	15.00425	1.35967	11.035	3.59e-09	* * *

Residual standard error: 3.039 on 17 degrees of freedom Multiple R-squared: 0.9003, Adjusted R-squared: 0.8886 F-statistic: 76.75 on 2 and 17 DF, p-value: 3.086e-09

The Dummy Variable Fit

Durability of Lathe Cutting Tools

rpm

A Model with Interactions

Question: do the slopes need to be identical?

 \rightarrow with the appropriate model, the answer is no!

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + E$$

 \rightarrow see blackboard for model interpretation...

Different Slope for the Regression Lines

Durability of Lathe Cutting Tools: with Interaction

rpm

Summary Output

> summary(lm(hours ~ rpm * tool, data = lathe))

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	32.774760	4.633472	7.073	2.63e-06	* * *
rpm	-0.020970	0.006074	-3.452	0.00328	* *
toolB	23.970593	6.768973	3.541	0.00272	* *
rpm:toolB	-0.011944	0.008842	-1.351	0.19553	

Residual standard error: 2.968 on 16 degrees of freedom Multiple R-squared: 0.9105, Adjusted R-squared: 0.8937 F-statistic: 54.25 on 3 and 16 DF, p-value: 1.319e-08

How Complex the Model Needs to Be?

Question 1: do we need different slopes for the two lines?

 $H_0: \beta_3 = 0$ against $H_A: \beta_3 \neq 0$

 \rightarrow individual parameter test for the interaction term!

Question 2: is there any difference altogether?

 $H_0: \beta_2 = \beta_3 = 0$ against $H_A: \beta_2 \neq 0$ and / or $\beta_3 \neq 0$

- \rightarrow this is a partial F-test
- \rightarrow we try to exclude interaction and dummy variable together

R offers convenient functionality for these tests!

Anova Output

Summary output for the interaction model

→ no different slopes, but different intercept!

Categorical Input with More than 2 Levels

There are now 3 tool types A, B, C:

 x_2 x_3 00for observations of type A10for observations of type B01for observations of type C

Main effect model: $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + E$

With interactions: $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_1 x_2 + \beta_5 x_1 x_3 + E$

Three Types of Cutting Tools

Durability of Lathe Cutting Tools: 3 Types

rpm

Applied Statistical Regression HS 2011 – Week 06 Summary Output

> summary(lm(hours ~ rpm * tool, data = abc.lathe)

Coefficients:Estimate		Std. Error	t value	Pr(> t)	
(Intercept)	32.774760	4.496024	7.290	1.57e-07	* * *
rpm	-0.020970	0.005894	-3.558	0.00160	* *
toolB	23.970593	6.568177	3.650	0.00127	* *
toolC	3.803941	7.334477	0.519	0.60876	
rpm:toolB	-0.011944	0.008579	-1.392	0.17664	
rpm:toolC	0.012751	0.008984	1.419	0.16869	

Residual standard error: 2.88 on 24 degrees of freedom Multiple R-squared: 0.8906, Adjusted R-squared: 0.8678 F-statistic: 39.08 on 5 and 24 DF, p-value: 9.064e-11 Marcel Dettling, Zurich University of Applied Sciences

Inference with Categorical Predictors

Do not perform individual hypothesis tests on factors!

Question 1: do we have different slopes?

 $H_0: \beta_4 = 0 \text{ and } \beta_5 = 0 \text{ against } H_A: \beta_4 \neq 0 \text{ and } / \text{ or } \beta_5 \neq 0$

Question 2: is there any difference altogether?

 $H_0: \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$ against $H_A: any of \beta_2, \beta_3, \beta_4, \beta_5 \neq 0$

 \rightarrow Again, R provides convenient functionality

Anova Output

> anova(fit.abc)

Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
rpm	1	139.08	139.08	16.7641	0.000415	* * *
tool	2	1422.47	711.23	85.7321	1.174e-11	* * *
rpm:tool	2	59.69	29.84	3.5974	0.043009	*
Residuals	24	199.10	8.30			

→ strong evidence that we need to distinguish the tools!
→ weak evidence for the necessity of different slopes

Residual Analysis – Model Diagnostics

Why do it? And what is it good for?

- a) To make sure that estimates and inference are valid
 - $E[\varepsilon_i] = 0$
 - $Var(\varepsilon_i) = \sigma_{\varepsilon}^2$
 - $Cov(\varepsilon_i, \varepsilon_j) = 0$
 - $\varepsilon_i \sim N(0, \sigma_{\varepsilon}^2 I)$, *i.i.d*

b) Identifying unusual observations

Often, there are just a few observations which "are not in accordance" with a model. However, these few can have strong impact on model choice, estimates and fit.

Residual Analysis – Model Diagnostics

Why do it? And what is it good for?

c) Improving the model

- Transformations of predictors and response
- Identifying further predictors or interaction terms
- Applying more general regression models
- There are both model diagnostic graphics, as well as numerical summaries. The latter require little intuition and can be easier to interpret.
- However, the graphical methods are far more powerful and flexible, and are thus to be preferred!

Residuals vs. Errors

All requirements that we made were for the errors E_i . However, they cannot be observed in practice. All that we are left with are the residuals r_i .

But:

- the residuals r_i are only estimates of the errors E_i , and while they share some properties, others are different.
- in particular, even if the errors E_i are uncorrelated with constant variance, the residuals r_i are not: they are correlated and have non-constant variance.
- does residual analysis make sense?

Standardized/Studentized Residuals

Does residual analysis make sense?

- the effect of correlation and non-constant variance in the residuals can usually be neglected. Thus, residual analysis using raw residuals r_i is both useful and sensible.
- The residuals can be corrected, such that they have constant variance. We then speak of standardized, resp. studentized residuals.

$$\tilde{r}_i = \frac{r_i}{\hat{\sigma}_{\varepsilon} \cdot \sqrt{1 - h_{ii}}}$$
, where $Var(\tilde{r}_i) = 1$ and $Cor(\tilde{r}_i, \tilde{r}_j)$ is small.

• R uses these \tilde{r}_i for the Normal Plot, the Scale-Location-Plot and the Leverage-Plot.

Marcel Dettling, Zurich University of Applied Sciences

Toolbox for Model Diagnostics

There are 4 "standard plots" in R:

- Residuals vs. Fitted, i.e. Tukey-Anscombe-Plot
- Normal Plot
- Scale-Location-Plot
- Leverage-Plot

Some further tricks and ideas:

- Residuals vs. predictors
- Partial residual plots
- Residuals vs. other, arbitrary variables
- Important: Residuals vs. time/sequence

Example in Model Diagnostics

Under the life-cycle savings hypothesis, the savings ratio (aggregate personal saving divided by disposable income) is explained by the following variables:

lm(sr ~ pop15 + pop75 + dpi + ddpi, data=LifeCycleSavings)

- **pop15**: percentage of population < 15 years of age
- pop75: percentage of population > 75 years of age
- dpi: per-capita disposable income
- adpi: percentage rate of change in disposable income

The data are averaged over the decade 1960–1970 to remove the business cycle or other short-term fluctuations.

Tukey-Anscombe-Plot

Plot the residuals r_i versus the fitted values \hat{y}_i

Tukey-Anscombe-Plot

Is useful for:

- finding structural model deficiencies, i.e. $E[E_i] \neq 0$
- if that is the case, the response/predictor relation could be nonlinear, or some predictors could be missing
- it is also possible to detect non-constant variance
 (→ then, the smoother does not deviate from 0)

When is the plot OK?

- the residuals scatter around the x-axis without any structure
- the smoother line is horizontal, with no systematic deviation
- there are no outliers

Tukey-Anscombe-Plot

Tukey-Anscombe-Plot

When the Tukey-Anscombe-Plot is not OK:

- If structural deficencies are present $(E[\mathcal{E}_i] \neq 0)$, often also called "non-linearities"), the following is recommended:
 - "fit a better model", by doing transformations on the response and/or the predictors
 - sometimes it also means that some important predictors are missing. These can be completely novel variables, or also terms of higher order
- Non-constant variance: transformations usually help!

Normal Plot

Plot the residuals \tilde{r}_i versus qnorm(i/(n+1),0,1)

Normal Plot

Is useful for:

- for identifying non-Gaussian errors: $E_i \sim N(0, \sigma_E^2 I)$

When is the plot OK?

- the residuals \tilde{r}_i must not show any systematic deviation from line which leads to the 1st and 3rd quartile.
- a few data points that are slightly "off the line" near the ends are always encountered and usually tolerable
- skewed residuals need correction: they usually tell that the model structure is not correct. Transformations may help.
- long-tailed, but symmetrical residuals are not optimal either, but often tolerable. Alternative: robust regression!

Normal Plot

Normal Q-Q Plot Normal Q-Q Plot 00 Lognormal Residuals 9 ELLO OD Normal Residuals 2 5 0 4 -0 ∞ 3 0 2 7 -O OCCURENTING 0 000 0 0 -2 2 2 0 1 -2 n **Theoretical Quantiles Theoretical Quantiles** Normal Q-Q Plot Normal Q-Q Plot 250 00^{00 0} Cauchy Residuals Uniform Residuals 0.8 150 0.4 20 00 cref 0 00000000 0 00000 0 COLLEGE C 0.0 0 2 -2 2 n -2 0 Theoretical Quantiles Theoretical Quantiles

Marcel Dettling, Zurich University of Applied Sciences

Scale-Location-Plot

Plot $\sqrt{|\tilde{r}_i|}$ versus \hat{y}_i

Scale-Location-Plot

Is useful for:

- identifying non-constant variance: $Var(E_i) \neq \sigma_E^2$
- if that is the case, the model has structural deficencies, i.e. the fitted relation is not correct. Use a transformation!
- there are cases where we expect non-constant variance and do not want to use a transformation. This can the be tackled by applying weighted regression.

When is the plot OK?

- the smoother line runs horizontally along the x-axis, without any systematic deviations.