Zurich University of Applied Sciences

Applied Statistical Regression HS 2010 – Week 13

Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, December 20, 2010

Non-Parametric Regression

Given fixed predictor values $x_1, ..., x_n$, we observe responses $y_1, ..., y_n$ with the relation:

 $y_i = f(x_i) + \varepsilon_i$, for all i = 1, ..., n

What is unknown?

- errors ε_i : we require iid property, zero mean, constant variance
- functional relation $f(\cdot)$
- → $f(\cdot)$ was parametric so far. This was a very versatile tool, see the blackboard for some examples...

Zurich University

Parametric or Non-Parametric?

Advantages of parametric models:

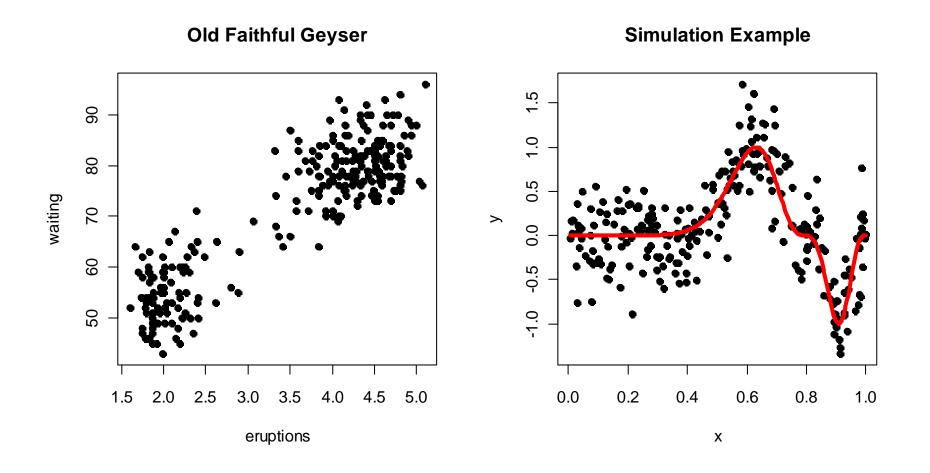
- Parametric models are more efficient
- Clear formulae make for clear interpretation
- Formal inference is possible
- Prediction/interpolation is possible

Advantages of non-parametric models:

- Flexibility, no prior knowledge required
- Less assumptions, less prone to bad mistakes

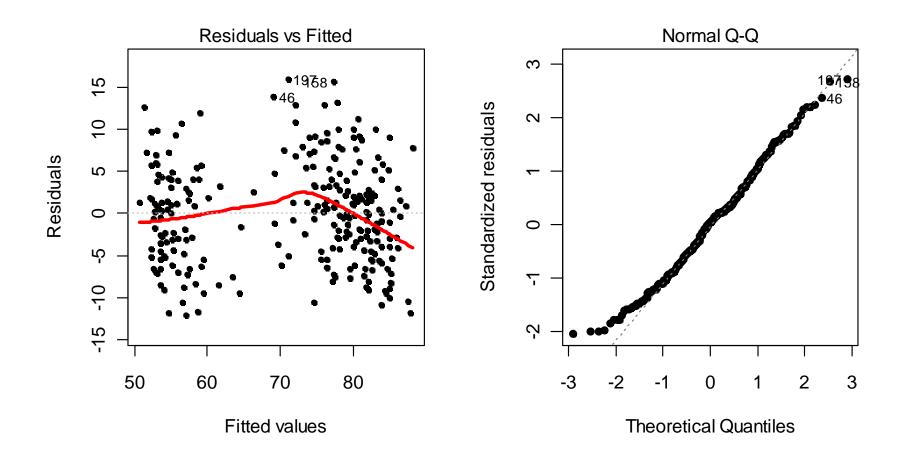
zh aw

Examples



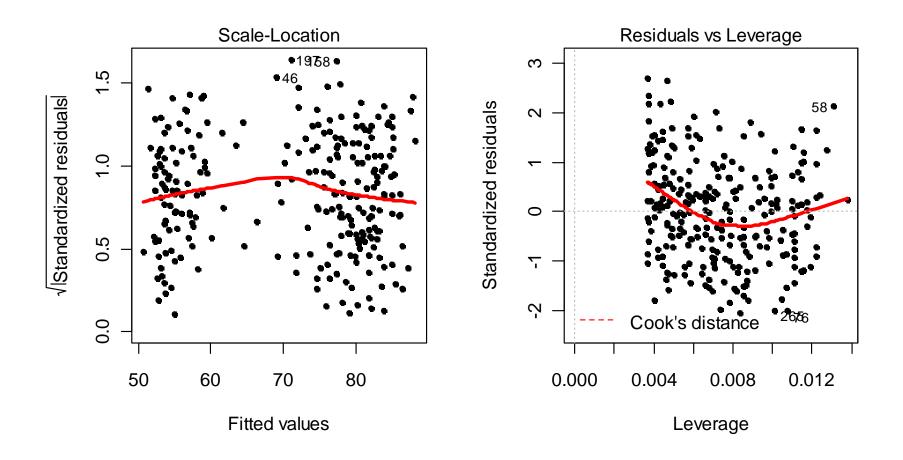
Zurich University

Linear Model for Old Faithful?



Zurich University

Linear Model for Old Faithful?



Zurich University of Applied Sciences

Applied Statistical Regression HS 2010 – Week 13

Kernel Smoothers

Kernel smoothing = weighted averaging of y-values over a fixed size window of x-values.

The estimate of $f(\cdot)$, denoted by $\hat{f}_{\lambda}(\cdot)$ is defined as:

$$\hat{f}_{\lambda}(x) = \frac{1}{n} \sum_{j=1}^{n} w_j Y_j \text{ with weights } w_j = \frac{1}{\lambda} \cdot K\left(\frac{x - x_j}{\lambda}\right)$$

- For the kernel, we require $\int K = 1$
- We can have rectangular kernels, Gaussian kernels, ...
- λ , called the bandwith, is the smoothing parameter

Zurich University

Nadaraya-Watson Kernel Estimator

If the predictor values are spaced very unevenly, the general Kernel estimator can yield poor results. This problem can be mitigated somewhat by the *Nadaraya-Watson estimator*.

$$\hat{f}_{\lambda}(x) = \frac{\sum_{j=1}^{n} w_j Y_j}{\sum_{j=1}^{n} w_j}$$

This estimator is a modified version of the kernel estimator. Its advantage is that the weights for the fitted value at each observation x_i will sum up to one.

Choosing the Kernel

We require that the kernel is:

- smooth
- compact
- easy to compute

A good and popular choice is the *Epanechnikov kernel*:

$$K(x) = \begin{cases} \frac{3}{4}(1 - x^2), & \text{if } |x| < 1\\ 0 & \text{else} \end{cases}$$

But smoothing usually is not too dependent on the kernel...

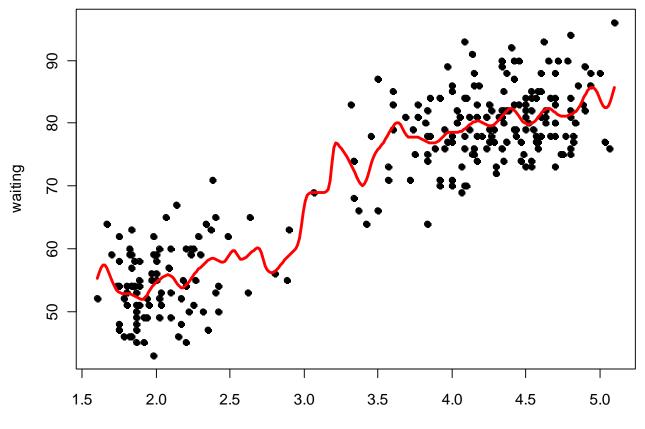
Zurich University of Applied Sciences

Applied Statistical Regression HS 2010 – Week 13

Choice of the Bandwith

By eyeballing:

Bandwith = 0.125



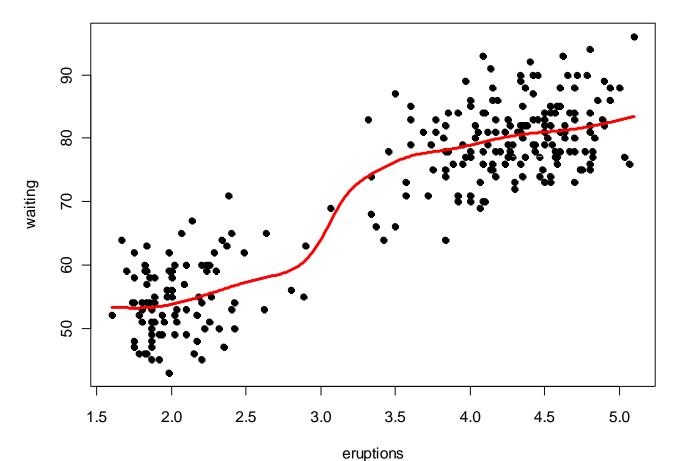
Zurich University of Applied Sciences

Applied Statistical Regression HS 2010 – Week 13

zh aw

Choice of the Bandwith

By eyeballing:

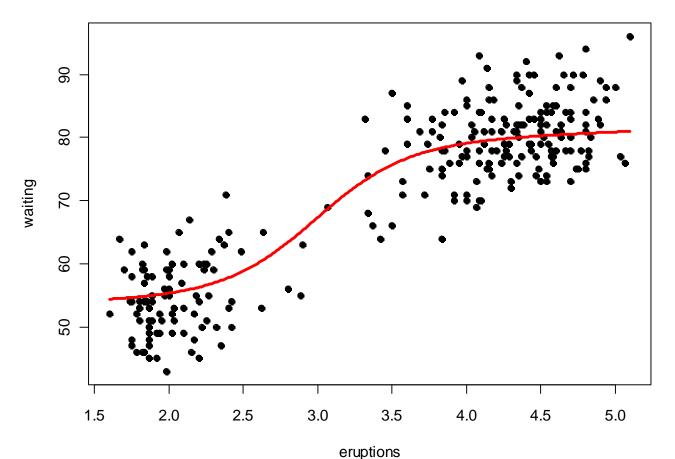


Zurich University of Applied Sciences

Applied Statistical Regression HS 2010 – Week 13

Choice of the Bandwith

By eyeballing:



Choice of the Bandwith

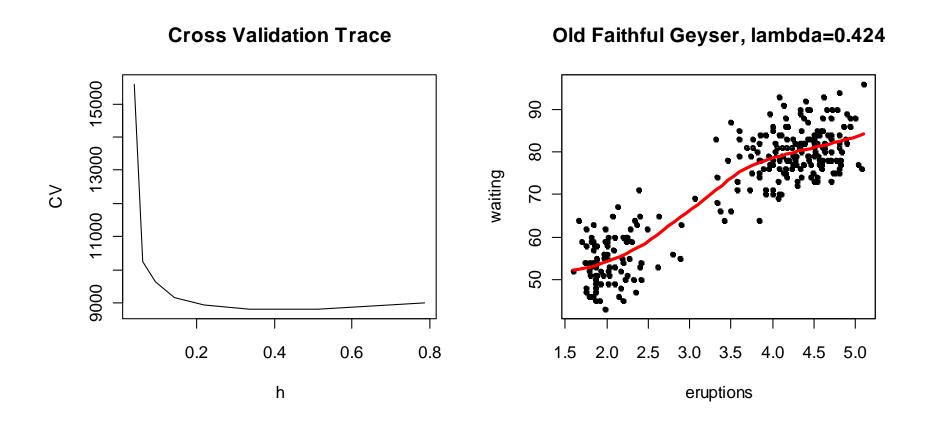
By cross validation:

$$CV(\lambda) = \frac{1}{n} \sum_{j=1}^{n} (y_i - \hat{f}_{\lambda(j)}(x_j))^2$$

where $\hat{f}_{\lambda(j)}(\cdot)$ is the fit that is obtained when the jth data point was omitted from the fitting process. Thus, we fit *j* smoothers and for each *j*, we compute the discrepancy between the fit for x_i and the observed response y_j . Of course, this needs to be done for a set of candidate λ that may seem suitable according to some eyeballing.

Choice of the Bandwith

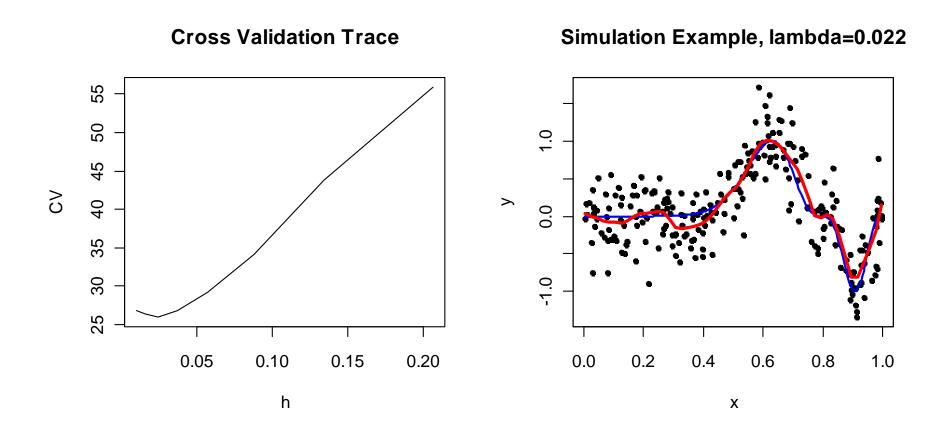
By cross validation:



Zurich University of Applied Sciences

Choice of the Bandwith

By cross validation:



Zurich University

Zurich University

Smoothing Splines

The basic notion behind the non-parametric regression is that there is that the relation between predictor and response is:

 $Y_i = f(x_i) + \mathcal{E}_i$

The goal is now to minimize the sum of squared errors. This requires some additional penalty on the smoothness of $f(\cdot)$

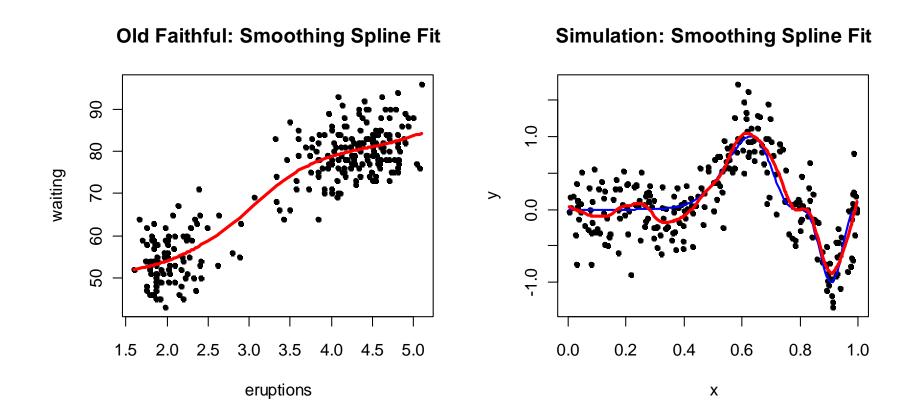
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - f(x_i))^2 + \lambda \int (f''(x))^2 dx$$

The solution are piecewise cubic polynomials in every interval (x_i, x_{i+1}) . This yields: continuous function & parametric problem.

Zurich University

Results with smooth.spline()

 \rightarrow the function offers a GCV approach for the choice of λ



Zurich University

Loess Smoother

The loess smoother is more robust than kernel estimators and smoothing splines. This makes it an attractive alternative!

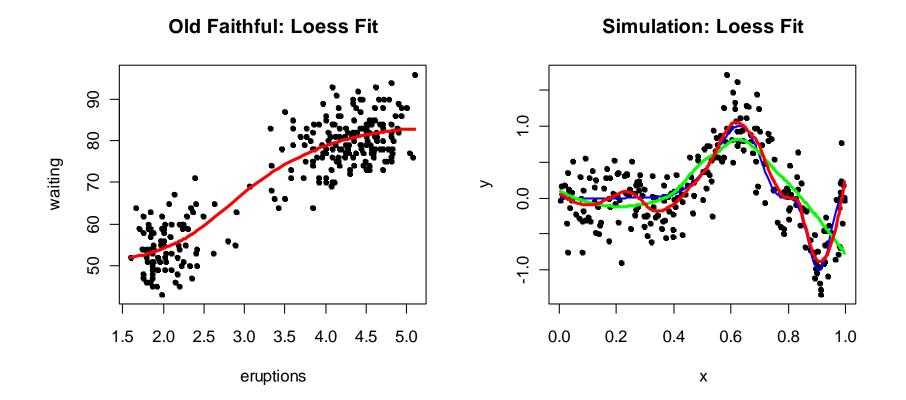
It works as follows:

- 1) Select a window of pre-defined size
- 2) Fit a polynomial (of degree 2 or 1) within this window, using a robust estimation method
- 3) Predicted response at the window center := fitted value
- 4) Slide the window over the entire x-range

Zurich University

Results with loess()

 $\boldsymbol{\rightarrow}\ \boldsymbol{\lambda}$, i.e. the window size needs to be chosen by the user



of Applied Sci

Additive Models

Due to the curse of dimensionality, non-parametric smoothing methods are not straightforwardly generalizable to problems with multiple predictors.

Instead, we can use the **additive model**:

 $Y_i = \beta_0 + f_1(x_1) + \dots + f_p(x_p) + \varepsilon_i$

- f_j are smooth, potentially non-parametric functions
- the errors are i.i.d. with zero mean and constant variance
- flexibility, interpretability and efficient fitting are given
- this is a versatile model: parametric terms, interactions, ...

Software for Fitting Additive Models

There are several packages in R for fitting (G)AMs:

library(gam):

- free choice of the smoother which is used
- based on backfitting, which is an iterative procedure
- different smoothers and amounts of smoothing possible

library(mgcv):

- penalized smoothing spline approach
- automatic choice of smoothing parameters is possible

Zurich University

Example

The data are from a study of the relation between atmospheric ozone concentration and some meteorological predictors and originate from the LA basin. They were recorded in 1976.

We consider three predictors:

- **temp**, the temperature measured at El Monte
- **ibh**, the inversion base height at the LAX airport
- **ibt**, the inversion top temperature, again at LAX.
- → We will fit both a multiple linear regression model for reference and an additive model to show improvements.

Summary Output

> summary(fit)

Coefficients:

(Intropt)		age	income	educ.L	educ.Q	educ.C
Indpt	-5.136	0.005	0.016	5.244	-6.341	4.693
Republ	-1.409	0.010	0.013	0.564	-0.720	0.017
	educ^4	educ^5	educ^6			
Indpt	-2.552	1.291	-0.539			
Republ	0.000	-0.103	-0.129			

Std. Errors: ...

Residual Deviance: 1511.612 AIC: 1547.612

Zurich University

Inference

No individual hypothesis tests, although standard errors are provided in the summary output!

- **Reason:** all parameters $\beta_{k2}, ..., \beta_{kJ}$ simultaneously need to be equal to zero, which cannot be tested with an individual hypothesis test.
- Way out: resort to a comparison of nested models, which will as before be based on log-likelihood ratios, resp. deviance differences.

Zurich University of Applied Sciences

Applied Statistical Regression HS 2010 – Week 13

Inference: Example

- > fit.age.inc <- multinom(party ~ age + income, data=nes)</pre>
- > deviance(fit.age.inc) deviance(fit)

[1] 13.70470

> pchisq(13.70470, fit\$edf - fit.age.inc\$edf, lower=FALSE)

[1] 0.3199618

- p-value is 0.32, thus, education is not significant
- Is this a surprise, given the mosaic plot from above?
- no, the biggest differences in party affiliation are among the young people below 25 years of age, which represent only a very small fraction of the observations

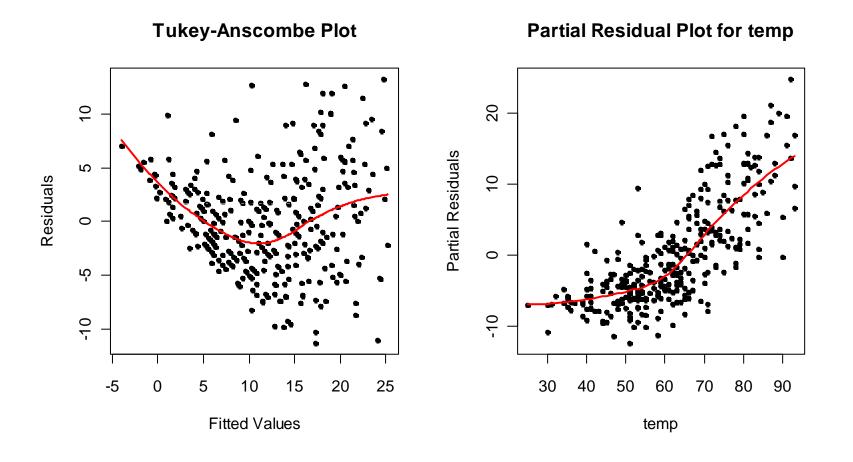
Multiple Linear Regression

> summary(lm(03 ~ temp + ibh + ibt, data = ozone))
Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -7.7279822 1.6216623 -4.765 2.84e-06 *** temp 0.3804408 0.0401582 9.474 < 2e-16 *** ibh -0.0011862 0.0002567 -4.621 5.52e-06 *** ibt -0.0058215 0.0101793 -0.572 0.568

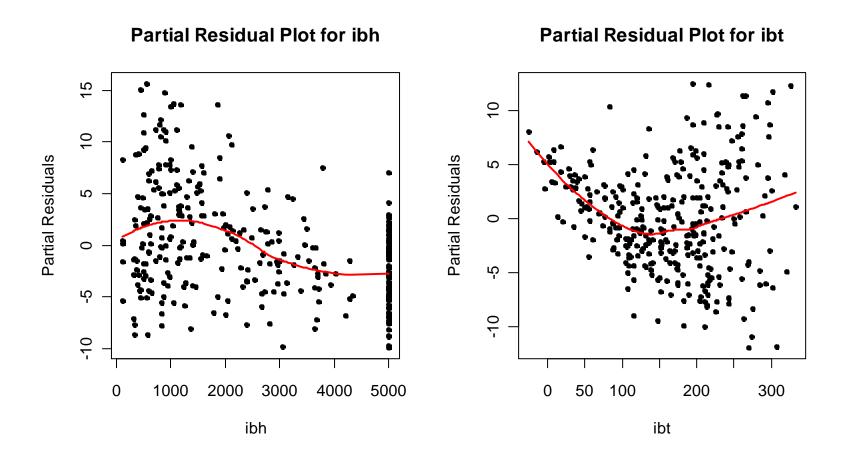
Residual standard error: 4.748 on 326 degrees of freedom Multiple R-squared: 0.652, Adjusted R-squared: 0.6488 F-statistic: 203.6 on 3 and 326 DF, p-value: < 2.2e-16

Diagnostic Plots



Marcel Dettling, Zurich University of Applied Sciences

Diagnostic Plots



zh aw

Fitting with gam()

```
> summary(fit.gam)
```

Call: gam(O3 ~ lo(temp) + lo(ibh) + lo(ibt), data=ozone)

Null Deviance: 21115.41 on 329 degrees of freedom Residual Deviance: 5935.096 on 318.0005 degrees of freedom AIC: 1916.049

 Df Npar Df Npar F
 Pr(F)

 (Intercept)
 1

 lo(temp)
 1
 2.5
 7.4550
 0.0002456

 lo(ibh)
 1
 2.9
 7.6205
 8.243e-05

 lo(ibt)
 1
 2.7
 7.8434
 9.917e-05

Inference for gam()

Deviance explained:

```
> 1-5935.096/21115.41
```

```
[1] 0.7189211
```

For multiple regression, the result was 0.652. However, we now spend more degrees of freedom.

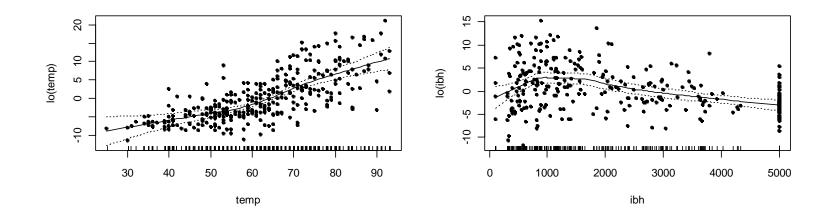
Individual hypothesis test are best done using nested model comparisons with an F-test, rather than with the score test:

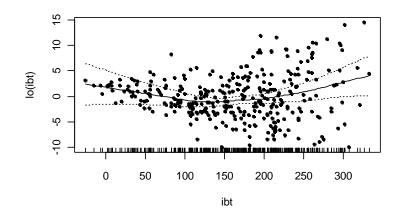
> fit.gam.small <- gam(03 ~ lo(temp)+lo(ibh), data=ozone)</pre>

> anova(fit.gam.small, fit.gam, test="F")

> 318.00 5935.1 3.6648 109.47 1.6005 0.179

Graphical Output of gam()





Zurich University

Informations on the Exam

- The exam will be on January 26, 2011 (provisional) and lasts for 120 minutes. But please see the official announcement.
- It will be open book, i.e. you are allowed to bring any written materials you wish. You can also bring a pocket calculator, but computers/notebooks and communcation aids are forbidden.
- Topics include everything that was presented in the lectures, from the first to the last, and everything that was contained in the exercises and master solutions.
- You will not have to write R-code, but you should be familiar with the output and be able to read it.

Zurich University

Informations on the Exam

- With the exam, we will try our best to check whether you are proficient in applied regression. This means choosing the right models, interpreting output and suggesting analysis strategies.
- Old exams will not be available for preparation. I recommend that you make sure that you understand the lecture examples well and especially focus on the exercises.
- There are 2 question hours in January. See the course webpage or exercise sheet 7 for time and location.
- There are some additional points for doctoral students, which will also be communicated via e-mail.

End of the Course

→ Happy holidays and all the best for the exams!

