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Logistic Regression Model

- Y, €{0,1} has a Bernoulli distribution.

« The parameter of this distribution is p,, the success rate
Now please note that:

P = P(Yi =1)= E[Yi]

- the most powerful notion of the logistic regression model is to
see it as a model where we try to find a relation between the
expected value of Y. and the predictors!

Important: p, = 4, + B X, +...+ 8%, is no good here!
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Example

Survival in Premature Birth

@
OLP)_
@ e e
A ® @ @ @ ¢ e AR @
@ A @ @A ®Ke® ¢ W
QS - A e e e e ® e 4o A @ee win 4 eo
8) A A A hoe @0 @ ® mve H»
I A  AedA A e A heoe FYY YYYVO VY I WY W W
A A @& elbdA o 0h eelhe o o @ o e
AA @A AA e A Aab eee Ao i e
g_ A A A AAe AL A A @
A A A SAA A A A A eAe e A
AA A AA A @
A A A A @
®
I I I I
2.8 2.9 3.0 3.1

log10(weight)

Marcel Dettling, Zurich University of Applied Sciences

sit
prpI\ed S eeeeeee

zh



Zurich University
eeeeeeeeeeeeeee

Applied Statistical Regression Zh
HS 2010 — Week 10 aw

Inference with GLMs

There are three tests that can be done:

« Comparing two nested models
- likelihood ratio test leads to deviance differences
- test statistics has an asymptotic Chi-Square distribution

 Global test
- comparing versus an empty model with only an intercept
- this Is a nested model, take the null deviance

Marcel Dettling, Zurich University of Applied Sciences 4
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Null Deviance

Smallest model:

- The smallest model is without predictors, only with intercept
- Fitted values will all be equal to 7,

- Our best fit (F) and the smallest model (O) are nested

A global test:
2(|(0)_|(F)): D(y, ﬁ‘F))—D(y, I3(0))
Example:

Null deviance: 319.28 on 246 degrees of freedom
Residual deviance: 235.94 on 244 degrees of freedom

arcel Dettling, Zurich University of Applied Sciences
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Model Diagnostics

Diagnostics are:

e as important with logistic regression as they are with multiple
linear regression models

« again based on differences between fitted & observed values

- we now have to take into account that the variances are not
equal for the different instances.

- we have to come up with novel types of residuals:

Pearson and Deviance residuals

Marcel Dettling, Zurich University of Applied Sciences
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Pearson Residuals

Take the difference between observed an fitted value and divide
by an estimate of the standard deviation:

Y, - P,
/B a-p)

- Rf IS the contribution of the ith observation to the Pearson
statistic for model comparison.

—> It is important to note that Pearson residuals exceeding a
value of two in absolute value warrant a closer look

Marcel Dettling, Zurich University of Applied Sciences 7
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Deviance Residuals

Take the contribution of the ith observation to the log-likelihood,
l.e. the chi-square statistic for model comparison.

d; =—2-(y; log(f;)+@-y)log(1-f))

For obtaining a well interpretable residual, we take the square
root and the sign of the difference between true and fitted value:

D, =sign(y, - p,)-/d,
-=> It is important to note that Pearson residuals exceeding a
value of two in absolute value warrant a closer look

ich University of Applied Sciences 8
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Tukey-Anscombe Plot

Remark: sometimes studentized residuals are used!

Tukey-Anscombe Plot 1 Tukey-Anscombe Plot 2
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Tukey-Anscombe Plot
The Tukey-Anscombe plots in R are not perfect. Better use:

XX <- predict(fit, type="response")

yy <- residuals(fit, type="'pearson’)
scatter.smooth(xx, yy, family="'gaussian', pch=20)
abline(h=0, 1ty=3)

Reasons:

using a non-robust smoother is a must
different types of residuals can be used
on the x-axis: probs or linear predictor

Marcel Dettling, Zurich University of Applied Sciences 10
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More Diagnhostics

Residuals vs Leverage

Std. Pearson resid.

< |- Cooltd distance
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Leverage
alm(survival ~ [(log10(weight)) + age)
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Binomial Regression Models
Concentration Number of Number of
in log of mgl/I insects n_i killed insects y_i
0.96 50 6
1.33 48 16
1.63 46 24
2.04 49 42
2.32 50 44

- for the number of killed insects, we have Y. ~ Bin(n,, p;)
- we are mainly interested in the proportion of insects surviving

- these are grouped data: there is more than 1 observation for
a given predictor setting

Marcel Dettling, Zurich University of Applied Sciences 12
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Model and Estimation

The goal is to find a relation:
=P(Y; =1 X,...X,) ~ 7=/ +181Xi1+"'+18pxip

We will again use the logit link function such that 7, = g(p;)

Iog[ pj ﬁO_I_IBlXI]._I_ +ﬁ le

Here,p, is the expected value E[Y, /n], and thus, also this model
here fits within the GLM framework. The log-likelihood is:

k n ]
|(,3)=Z Iog(y)+ny,log(p)+n(1 y;)log(1-p;)

arcel Dettling, Zurich University of Applied Sciences
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Fitting with R

We need to generate a two-column matrix where the first
contains the “successes” and the second contains the “failures”

> killsurv
killed surviv

[1,] 6 44
12,1 16 32
[3.] 24 22
[4,] 42 7
[5,] 44 6

> it <- gIm(killsurv~conc, family="binomial')

ich University of Applied Sciences 14
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Summary Output
The result for the insecticide example is:

> summary(gIm(killIsurv ~ conc, family = "binomial™)

Coefficients:
Estimate Std. Error z value Pr(>|z}])
(Intercept) -4.8923 0.6426 -7.613 2.67e-14 ***
conc 3.1088 0.3879 8.015 1.11e-15 ***
Null deviance: 96.6881 on 4 degrees of freedom
Residual deviance: 1.4542 on 3 degrees of freedom
AIC: 24.675

Marcel Dettling, Zurich University of Applied Sciences 15
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Proportion of Killed Insects

Insecticide: Proportion of Killed Insects
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Inference with GLMs
There are three tests that can be done:

« Goodness-of-fit test
- based on comparing against the saturated model
- not suitable for non-grouped, binary data

ich University of Applied Sciences
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Goodness-of-Fit Test

- the residual deviance will be our goodness-of-fit measure!

Paradigm: take twice the difference between the log-likelinood

for our current model and the saturated one, which fits
the proportions perfectly, i.e. p, =y, /n,

ool [ (n-y) )
D(y, p) =2>"| y log| 2t [+ (n — )| ),
(y, p) ley og( i]+(n Vi) Ogt(ni—yi)]_

Because the saturated model fits as well as any model can fit, the
deviance measures how close our model comes to perfection.
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Evaluation of the Test

Asymptotics:
If Y. is truly binomial and the n. are large, the deviance is
approximately 2° distributed. The degrees of freedom is:

k —(# of predictors) -1

> pchisqg(deviance(fit), df.residual(fit), lower=FALSE)
[1] 0.69287

Quick and dirty:
Deviance > df : © model is not worth much.
More exactly: check df +2,/df

9 only apply thls testif atleastall n. =5
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Overdispersion
What if Deviance > df ?2??
1) Check the structural form of the model

- model diagnostics
- predictor transformations, interactions, ...

2) Outliers
- should be apparent from the diagnostic plots
3) IID assumption for P, within a group

- unrecorded predictors or inhomogeneous population
- subjects influence other subjects under study
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Overdispersion: a Remedy
We can deal with overdispersion by estimating:

~ X® 1 (Y, —n;p,)’
/ n-p n-p .Z;‘npi(l o

This is the sum of squared Pearson residuals divided with the df

Implications:

- regression coefficients remain unchanged
- standard errors will be different: inference!
- need to use an F-test for comparing nested models

ich University of Applied Sciences 21
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Results when Correcting Overdispersion

> phi <- sum(resid(fit)"2)/df.residual (fit)
> phi
[1] 0.4847485
> summary(fit, dispersion=phit)
Estimate Std. Error z value Pr(>|z])

(Intercept) -4.8923 0.4474 -10.94 <2e-16 ***
conc 3.1088 0.2701 11.51 <2e-16 ***
(Dispersion parameter taken to be 0.4847485)

Null deviance: 96.6881 on 4 degrees of freedom
Residual deviance: 1.4542 on 3 degrees of freedom
AIC: 24.675

Marcel Dettling, Zurich University of Applied Sciences 22



urich University
eeeeeeeeeeeeeee

Applied Statistical Regression Zh
HS 2010 — Week 10 aw

Poisson-Regression
When to apply?

 Responses need to be counts
- for bounded counts, the binomial model can be useful
- for large numbers the normal approximation can serve

 The use of Poisson regression is a must if;
- unknown population size and small counts
- when the size of the population is large and hard to come by,
and the probability of “success”/ the counts are small.

Methods:

Very similar to Binomial regression!
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