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L i ti R iLogistic Regression 
•                    has a Bernoulli d{ }0,1iY ∈

• The parameter of this distri

{ },i

Now please note that:

( 1) [ ]P Y E Y

the most powerful notion o

( 1) [ ]i i ip P Y E Y= = =

see it as a model where w
expected value of and thiY

Important: 0 1 1 ...i ip xβ β β= + + +
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M d lModel
distribution.

bution is , the success rateip

of the logistic regression model is to
e try to find a relation between the
he predictors! 

is no good here! ipxβ
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E lExample
Survival in Prem
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I f ith GLMInference with GLMs
There are three tests that can

• Goodness-of-fit test
based on comparing agai- based on comparing agai

- not suitable for non-group

• Comparing two nested m
- likelihood ratio test leads
- test statistics has an asym

• Global test• Global test
- comparing versus an emp
- this is a nested model tak
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this is a nested model, tak

ressionression

be done:

nst the saturated modelnst the saturated model
ped, binary data

models
to deviance differences

mptotic Chi-Square distribution

pty model with only an intercept
ke the null deviance
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N ll D iNull Deviance
Smallest model:

- The smallest model is with
Fitted values will all be eq- Fitted values will all be eq

- Our best fit (F) and the sm

A global test:

( ) ( )(0) ( ) ( )ˆ2 F Fl l D y p D− = −

Example:

( ) ( )2 ,l l D y p D− = −

Null deviance: 319.28  o

Residual deviance: 235 9
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Residual deviance: 235.9

ressionression

hout predictors, only with intercept
qual to π̂qual to
mallest model (0) are nested

0π

( )(0)ˆD y p( ),D y p

on 246  degrees of freedom

94 on 244 degrees of freedom
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M d l Di tiModel Diagnostics
Diagnostics are:g

• as important with logistic re
linear regression modelslinear regression models

• again based on differences

we now have to take into a
equal for the different instaequal for the different insta

we have to come up with n

Pearson and Deviance res
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ressionression

egression as they are with multiple 

s between fitted & observed values

ccount that the variances are not 
ncesnces.

ovel types of residuals:

siduals
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P R id lPearson Residuals
Take the difference between o
by an estimate of the standard

ˆ
ˆ ˆ(1 )

i i
i

i i

y pR
p p
−

=
−

is the contribution of the2
iR

( )i ip p

statistic for model compari

It is important to note thatIt is important to note that
value of two in absolute va
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observed an fitted value and divide
d deviation:

e ith observation to the Pearson 
son.

Pearson residuals exceeding aPearson residuals exceeding a 
alue warrant a closer look
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D i R id lDeviance Residuals
Take the contribution of the ith
i.e. the chi-square statistic for

( )( ( )( ˆ2 log (1i i id y p= − ⋅ + −

For obtaining a well interpreta
root and the sign of the differe

ˆ( )i i i iD sign y p d= − ⋅

It is important to note that
value of two in absolute va
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h observation to the log-likelihood, g ,
model comparison.

( ))( ))ˆ) log 1i iy p−

able residual, we take the square 
ence between true and fitted value:

Pearson residuals exceeding a 
alue warrant a closer look
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T k A b PlTukey-Anscombe Plo
Remark: sometimes studentiz

Tukey-Anscombe Plot 1
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tot
zed residuals are used!

Tukey-Anscombe Plot 2
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T k A b PlTukey-Anscombe Plo
The Tukey-Anscombe plots iny p

xx <- predict(fit, type="re

id l (fi "yy <- residuals(fit, type="

scatter.smooth(xx, yy, fami

bli (h 0 lt 3)abline(h=0, lty=3)

Reasons:

- using a non-robust smoothe
- different types of residuals- different types of residuals
- on the x-axis: probs or linea
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tot
n R are not perfect. Better use:p

esponse")

" ")"pearson")

ily="gaussian", pch=20)

er is a must
can be usedcan be used
ar predictor
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M Di tiMore Diagnostics
2

Residuals vs Lev
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glm(survival ~ I(log10(w

ressionression

verage

165
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Bi i l R iBinomial Regression
Concentration
in log of mg/l

Number of
insects n iin log of mg/l insects n_i

0.96

1.33

1.63

2.04

2 32

for the number of killed inse

2.32

we are mainly interested in

these are grouped data: the
a given predictor setting
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M d ln Models
Number of
killed insects y ikilled insects y_i

50 6

48 16

46 24

49 42

50 44

ects, we have

50 44

~ ( , )i i iY Bin n p

 the proportion of insects surviving
i i i

ere is more than 1 observation for
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M d l d E ti tiModel and Estimation
The goal is to find a relation:g

1( 1| ,..., ) ~i i pp P Y x x= =

We will again use the logit link

p⎛ ⎞
0 1 1log

1
i

i
i

p x
p

β β
⎛ ⎞

= +⎜ ⎟−⎝ ⎠
Here,     is the expected value
here fits within the GLM frame

ip

( ) log
k

i
i i

n
l n y

y
β

⎡ ⎛ ⎞
= +⎢ ⎜ ⎟

⎝ ⎠⎣
∑
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1i iy= ⎝ ⎠⎣
∑

ressionression

n

0 1 1 ...i i p ipx xη β β β= + + +

k function such that ( )i ig pη =

1 ... p ipxβ+ +

e             , and thus, also this model 
ework. The log-likelihood is:

[ / ]i iE Y n

log( ) (1 ) log(1 )i i i ip n y p
⎤

+ − − ⎥
⎦
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Fitti ith RFitting with R
We need to generate a two-cog
contains the “successes” and

> kill> killsurv
killed surviv

[1 ] 6 44[1,]      6     44
[2,]     16     32
[3 ] 24 22[3,]     24     22
[4,]     42      7
[5 ] 44 6[5,]     44      6

> fit <- glm(killsurv~

Marcel Dettling, Zurich University of Applied Sciences

ressionression

olumn matrix where the first
the second contains the “failures”

~conc, family="binomial")
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S O t tSummary Output
The result for the insecticide e

> summary(glm(killsurv ~ co

Coefficients:

E ti t Std EEstimate Std. E

(Intercept)  -4.8923     0.

conc 3 1088 0conc 3.1088     0.

---

Null deviance: 96 6881Null deviance: 96.6881 

Residual deviance:  1.4542 

AIC: 24 675

Marcel Dettling, Zurich University of Applied Sciences

AIC: 24.675

ressionression

example is:p

onc, family = "binomial")

E l P (>| |)Error z value Pr(>|z|)    

.6426  -7.613 2.67e-14 ***

3879 8 015 1 11e 15 ***.3879   8.015 1.11e-15 ***

on 4 degrees of freedom on 4  degrees of freedom

 on 3  degrees of freedom
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P ti f Kill d IProportion of Killed I

I ti id P
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I tInsects

ti f Kill d I toportion of Killed Insects

1.5 2.0 2.5

Concentration

16



Applied Statistical RegrApplied Statistical Regr
HS 2010 – Week 10

I f ith GLMInference with GLMs
There are three tests that can

• Goodness-of-fit test
based on comparing agai- based on comparing agai

- not suitable for non-group

• Comparing two nested m
- likelihood ratio test leads
- test statistics has an asym

• Global test• Global test
- comparing versus an emp
- this is a nested model tak
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this is a nested model, tak

ressionression

be done:

nst the saturated modelnst the saturated model
ped, binary data

models
to deviance differences

mptotic Chi-Square distribution

pty model with only an intercept
ke the null deviance
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G d f Fit T tGoodness-of-Fit Test
the residual deviance wil

Paradigm: take twice the diffe
for our current modfor our current mod
the proportions pe

ˆ( , ) 2 log (
ˆ

k
i

i
yD y p y n
y

⎡ ⎛ ⎞
= +⎢ ⎜ ⎟

⎝ ⎠⎣
∑

Because the saturated model

1i iy= ⎝ ⎠⎣

Because the saturated model 
deviance measures how close
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ressionression

tt
l be our goodness-of-fit measure!g

erence between the log-likelihood
del and the saturated one which fitsdel and the saturated one, which fits
rfectly, i.e. ˆ /i i ip y n=

( )) log
ˆ( )

i i
i i

n yn y
n y

⎤⎛ ⎞−
− ⎥⎜ ⎟

⎝ ⎠⎦

fits as well as any model can fit the

( )i in y−⎝ ⎠⎦

fits as well as any model can fit, the 
e our model comes to perfection. 
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E l ti f th TEvaluation of the Tes
Asymptotics:y p
If      is truly binomial and the  
approximately  distributed. T

iY n
2χpp y

(# )k of predictors− −

> pchisq(deviance(fit), df.

[1] 0.69287

Quick and dirty:
: model iDeviance df : model i

More exactly: check
Deviance df

2df df±
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only apply this test if at leas

ressionression

tst

   are large, the deviance is 
The degrees of freedom is:

in
g

1−

.residual(fit), lower=FALSE)

s not worth muchs not worth much. 
df
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O di iOverdispersion
What if ??Deviance df
1) Check the structural form

f

- model diagnostics
- predictor transformations

2) Outliers

- should be apparent from

3) IID assumption for withp3) IID assumption for with

- unrecorded predictors or

ip
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- subjects influence other s

ressionression

??

m of the model

s, interactions, …

the diagnostic plots

hin a grouphin a group

inhomogeneous population

20

subjects under study
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O di i ROverdispersion: a Re
We can deal with overdispersp

2 (1ˆ
ˆ

n
iyX

n p n p n p
φ −
= = ⋅∑

This is the sum of squared Pe

1i i in p n p n p=− − ∑

This is the sum of squared Pe

Implications:

- regression coefficients rema
- standard errors will be differe- standard errors will be differe
- need to use an F-test for com
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ressionression

demedy
ion by estimating:y g

2ˆ )
ˆ(1 )

i in p
p

−

earson residuals divided with the df

(1 )ip−

earson residuals divided with the df

ain unchanged
ent: inference!ent: inference!
mparing nested models
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R lt h CResults when Correc
> phi <- sum(resid(fit)^2)/p ( ( ) )/

> phi

[1] 0.4847485

> summary(fit, dispersion=p

Estimate Std. E

(Intercept)  -4.8923     0.

conc 3.1088     0.

---

(Dispersion parameter taken

Null deviance: 96.6881 

Residual deviance:  1.4542 

Marcel Dettling, Zurich University of Applied Sciences

AIC: 24.675

ressionression

ti O di icting Overdispersion
/df.residual(fit)/ ( )

phi)

Error z value Pr(>|z|)   

.4474  -10.94   <2e-16 ***

.2701   11.51   <2e-16 ***

n to be 0.4847485)

 on 4  degrees of freedom

 on 3  degrees of freedom

22



Applied Statistical RegrApplied Statistical Regr
HS 2010 – Week 10

P i R iPoisson-Regression
When to apply?pp y

• Responses need to be cou
for bounded counts the b- for bounded counts, the b

- for large numbers the nor

• The use of Poisson regress
- unknown population size
- when the size of the popu
and the probability of “suc

Methods:
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Very similar to Binomial regre

ressionression

nts
binomial model can be usefulbinomial model can be useful
mal approximation can serve

sion is a must if:
and small counts

ulation is large and hard to come by,
ccess”/ the counts are small. 
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