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Extending the Linear
What is the problem?What is the problem?

Want to model a binary r

• Variance will not be eq

• Values beyond 0/1, or b

We need some additional teWe need some additional te
these types of situations.

Depending on how the resp
several different approache
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r Model

response, or a proportion!

ual

beyond [0,1] will result

echniques which can deal withechniques which can deal with

onse variable is, there are
s.
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L i ti R iLogistic Regression
Example:p

In human medicine, we are
how much dose“ of a medhow much „dose“ of a med
reduction in pain or sympto

Data:

Patients where each obtaPatients, where each obta
reduction (1), or not (0). 

There may be some furthe
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e often interested in the question for
dication we have an effect i e adication we have an effect, i.e. a 
oms.

ins some dose“ and either has ains some „dose  and either has a 

er predictors such as age, sex, …
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Si l St ti ti l MSimple Statistical Mo
• A statistical model for this s

a given “dose”, we will only
subjects, but not on all of thj

• We are thus trying to mode
response and a number ofresponse and a number of 

The simplest approach is:

0 1 1( 1) ...i iP Y xβ β β= = + + +

this will lead to probabilities
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d lodel
situation takes into account that for 
y have an effect on some of the 
hem. 

el the relation between the binary 
predictorspredictors. 

ipxβ

s beyond the interval of [0,1].
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A B tt M d lA Better Model
• We obtain a better model if

to a scale that ranges from

Usual choice is the so calle• Usual choice is the so-calle

ln( / (1 ))p p p−

We obtain the logistic regress

0 1
( 1)log

1 ( 1)
i

i

P Y
P Y

β β
⎛ ⎞=

= +⎜ ⎟− =⎝ ⎠

all fitted values are within [0

( )i⎝ ⎠

Marcel Dettling, Zurich University of Applied Sciences

ressionression

f we transform the response variable p
minus to plus infinity.

ed logit transformation:ed logit transformation:

sion model:

1 ...i ipx xβ+ +

0,1].
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P i R iPoisson Regression
What are predictors for the locp

analyze the number of starf
we also have some covariawe also have some covaria

the response variable is a c
a Poisson distribution.

We assume that the parameteWe assume that the paramete
linearly on the covariates:

, where~ ( )i iY Pois λ iλ β=
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cations of starfish? 

fish at several locations, for which
ates such as water temperatureates such as water temperature, ...

count. The simplest model for this is

er at location i depends in aλer at location i depends in a iλ

0 1 1 ...i p ipx xβ β β+ + +
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L Li M d lLog-Linear Models
Question:Q

Prediction of a nominal res

Example:

Which party does a personWhich party does a person
such as education, age, se

such data can be summariz

and they can be modeled uand they can be modeled u
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ponse variable

favor depending on covariatesfavor, depending on covariates
x, region, …

zed with contingency tables

using log-linear modelsusing log-linear models
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G li d Li MGeneralized Linear M
What is it?

• General framework for regr

• Many different response typ

• Notion: the expected value• Notion: the expected value
relation to a linear combina

• Some further requirements

0 1 1[ ] ( ...i iE Y g xβ β β= + + +

• Some further requirements

may seem complicated, b
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M d lModels

ression type modeling

pes are allowed

of the response has a monotoneof the response has a monotone 
ation of the predictors.

on variance and density of Y

)p ipxβ

on variance and density of Y

but is very powerful!
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Bi L i ti RBinary Logistic Regr
What is it?

• Response { }0,1iY ∈

What do we need to take ca

• Formulation of the model• Formulation of the model

• Estimation

• Inference

• Model diagnostics

• Model choice
Marcel Dettling, Zurich University of Applied Sciences
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ressionression

iression

re of?
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E lExample
Premature Birth, by Hubbard, y

survival (1) /death ({ }0,1iY ∈

Predictors:

weight (in gra- weight (in gra
- age at birth (

apgar scores- apgar scores
- pH-value of t

Observations:

- there are 247
Marcel Dettling, Zurich University of Applied Sciences

there are 247

ressionression

d (1986)( )

(0) after premature birth.

ams) at birthams) at birth
in weeks of pregnancy)

s (vital function after 1 and 5 min)s (vital function after 1 and 5 min)
the blood (breathing)

7 instances
10

7 instances
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E lExample
Survival in Prem

35
030

ag
e

25

2.8 2.9

20
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log10(we

ressionression

mature Birth

3.0 3.1

11
eight)
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L i ti R iLogistic Regression 
•                    has a Bernoulli d{ }0,1iY ∈

• The parameter of this distri

{ },i

Now please note that:

( 1) [ ]P Y E Y

the most powerful notion o

( 1) [ ]i i iP Y E Yπ = = =

see it as a model where w
expected value of and thiY

Important: 0 1 1( 1)i iP Y xβ β= = + +
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M d lModel
distribution.

bution is , the success rateiπ

of the logistic regression model is to
e try to find a relation between the
he predictors! 

is no good here! ... ipxβ+ +
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L it T f tiLogit Transformation
Goal: mapping from [0,1] (pp g

Logit transformation:

[0,1] (

( )g π =g

Interpretation: Probabilities ar

( )g

can then be modeled using a 

( 1)P Y⎛ ⎞
0

( 1)log
1 ( 1)

i

i

P Y
P Y

β
⎛ ⎞=

= +⎜ ⎟− =⎝ ⎠

where is the error term?
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n
( , )−∞ +∞( , )+

log
1
π⎛ ⎞= ⎜ ⎟

⎝ ⎠

re mapped to log-odds ratios which

g
1 π⎜ ⎟−⎝ ⎠

linear relation.

1 1 ...i ipx xβ β+ +
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S R kSome Remarks
• For estimating the regressig g

need to be independent

There is no restriction for th• There is no restriction for th
continuous, categorical, tra

• is ca

• is the link function ma

0 1 1 ...i i p ipx xη β β β= + + +

( )g• is the link function, ma

• There are other (less imp

( )g ⋅

- probit link
- c-log-log link
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on coefficients, the observations,

he predictors They can behe predictors. They can be
ansformed, interactions, …

alled the linear predictor

apping between and[ ]E Y ηapping between and

ortant) link functions:

[ ]iE Y iη
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S i l Li PSurvival vs. Linear P
• ( )10( 1| log ( ), )g P Y weight age= =

.0

Survival vs. Linear Pre

( )10( | g ( ) )g g g

0.
8

1
4

0.
6

su
rv

iv
al

0.
2

0.
4s

-3 -2 -1 0 1

0.
0
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3 2 1 0 1

linear predictor

ressionression

P di tPredictor
1033.97 10.17 log ( ) 0.14weight age= − + ⋅ + ⋅

edictor

10g ( )g g

2 3
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E ti tiEstimation
Multiple linear regression:p g

minimize sum of squared
can be solved in close

Logistic regression:
maximum likelihood appmaximum likelihood app

leads to a non-linear e
solved with an iterativesolved with an iterative
linear regressions.

Important:
seems like a very differe
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d residuals!
ed form

proach!proach!
equation system that needs to be
e approach by weighted multiplee approach by weighted multiple

ent paradigm, but is it? 
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I t t ti f thInterpretation of the
see blackboard…
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C ffi i tCoefficients
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I fInference
> summary(glm(survival ~ I(y(g ( (

family  = "bi

i id lDeviance Residuals: ...

Coefficients:     Estimate 

(Intercept)      -33.97108 

I(log10(weight))  10.16846 

age                0.14742 

---

Null deviance: 319.28  

Residual deviance: 235.94  

Marcel Dettling, Zurich University of Applied Sciences

AIC: 241.94

ressionression

(log10(weight)) + age,( g ( g )) g ,

inomial", data = baby)

Std. Error z value Pr(>|z|) 

   4.98983  -6.808 9.89e-12 ***

   1.88160   5.404 6.51e-08 ***

   0.07427   1.985   0.0472 * 

on 246  degrees of freedom

on 244  degrees of freedom
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I di id l P tIndividual Parameter
Multiple Linear Regression:p g

Gaussian errors areˆ
jβ

Logistic Regression:

There are no errors variabThere are no errors, variab

The regression coefficients
distributed with a covarianc
the coefficients. 

Hence: 
ˆ

~ (0,1
ˆ

j jZ N
V

β β−
=

Marcel Dettling, Zurich University of Applied Sciences

jjV

ressionression

T tr Tests

e normally distributed

ility arises from Bernoulli distributionility arises from Bernoulli distribution

s are only approximately normallyˆ
jβ

ce matrix that can be derived from
j

V

1)

19



Applied Statistical RegrApplied Statistical Regr
HS 2010 – Week 09

G d f fitGoodness-of-fit
Multiple Linear Regression:p g

Sum of Squared Residuals

Logistic Regression:

Residual DevianceResidual Deviance

ˆ ˆ( , ) 2 ( log(i iD y yπ π= − ∑

- based on the log-likelihoo

( , ) 2 ( log(i ii
D y yπ π∑

- based on the log-likelihoo
- in principle: comparison a

Marcel Dettling, Zurich University of Applied Sciences
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ˆ) (1 ) log(1 ))i iy π+ − −

od

) (1 ) log(1 ))i iy π+

od
against fully saturated model
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C i N t d MComparing Nested M
Model 1: small model S, with,

Model 2: big model B, with p 

Null hypothesis and test sta

: 0H β β β= = = =0 1 2: ... 0q q pH β β β+ += = = =

( ) ( )( ) ( ) ( )ˆ2 ,B S Sll ll D y π− =

Distribution of the test statis
( ) ( ),y

( ) ( ) 2~S B
p qD D χ −−
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M d lModels
q parametersq p

parameters

atistic:

00

) ( )( )ˆ, BD y π−

stic:
) ( ),y
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E l ith d 1()Example with drop1()
> drop1(fit, test="Chisq")p ( , q )

Single term deletions

Model: survival ~ I(log10(w

Df Devianc

<none>                235.9

I(log10(weight))  1   270.1

age               1   239.8

Question:

- where is the difference to th
- it exists, though it‘s not obv

Marcel Dettling, Zurich University of Applied Sciences
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()()

weight)) + age

ce    AIC    LRT   Pr(Chi)  

94 241.94    

19 274.19 34.247 4.855e-09 ***

89 243.89  3.948   0.04694 *  

he summary output?
vious and asymptotically vanishes
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AIC d V i bl S lAIC and Variable Sele
General remark:

All comparison between mo
done using the AIC criteriondone using the AIC criterion
also here.

The criterion:

ˆ( ) 2AIC D y pπ= +

Variable selection:

( , ) 2iAIC D y pπ= +

- stepwise approaches as w
- factor variables need to b

Marcel Dettling, Zurich University of Applied Sciences

factor variables need to b

ressionression

tiection

odels of different size can also be
n Not only in logistic regression butn. Not only in logistic regression, but 

with multiple linear regression
e treated the right way!

23
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N ll D iNull Deviance
Smallest model:

- The smallest model is with
Fitted values will all be eq- Fitted values will all be eq

- Our best fit (F) and the sm

A global test:

( ) ( )( ) (0) (0)ˆ2 Fll ll D y Dπ− = −

Example:

( ) ( )2 ,ll ll D y Dπ− = −

Null deviance: 319.28  o

Residual deviance: 235 9

Marcel Dettling, Zurich University of Applied Sciences

Residual deviance: 235.9

ressionression

hout predictors, only with intercept
qual to π̂qual to
mallest model (0) are nested

0π

( )( )ˆ FD y π( ),D y π

on 246  degrees of freedom

94 on 244 degrees of freedom

24
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M d l Di tiModel Diagnostics
Diagnostics are:g

• as important with logistic re
linear regression modelslinear regression models

• again based on differences

we now have to take into a
equal for the different instaequal for the different insta

we have to come up with n

Pearson and Deviance res

Marcel Dettling, Zurich University of Applied Sciences
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egression as they are with multiple 

s between fitted & observed values

ccount that the variances are not 
ncesnces.

ovel types of residuals:

siduals
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P R id lPearson Residuals
Take the difference between o
by an estimate of the standard

ˆ
ˆ ˆ(1 )

i i
i

i i

yR π
π π

−
=

−

is the contribution of the

( )i i

2
iR

statistic for model compari

It is important to note thatIt is important to note that
value of two in absolute va

Marcel Dettling, Zurich University of Applied Sciences
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observed an fitted value and divide
d deviation:

e ith observation to the Pearson 
son.

Pearson residuals exceeding aPearson residuals exceeding a 
alue warrant a closer look
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D i R id lDeviance Residuals
Take the contribution of the ith
i.e. the chi-square statistic for

⎛ ⎛ ⎞
log (1 ) l

ˆ
i

i i i
i

yd y y
π

⎛ ⎛ ⎞
= + −⎜ ⎜ ⎟⎜ ⎝ ⎠⎝

For obtaining a well interpreta
root and the sign of the differe

ˆ( )i i i iD sign y dπ= − ⋅

It is important to note that
value of two in absolute va

Marcel Dettling, Zurich University of Applied Sciences
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h observation to the log-likelihood, g ,
model comparison.

1 ⎞⎛ ⎞1log
ˆ1

i

i

y
π

⎞⎛ ⎞−
⎟⎜ ⎟⎟−⎝ ⎠⎠

able residual, we take the square 
ence between true and fitted value:

Pearson residuals exceeding a 
alue warrant a closer look
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T k A b PlTukey-Anscombe Plo
2

Tukey-Anscombe Plot 1

0
1

si
du

al
s

-2
-1

P
ea

rs
on

 re

0.2 0.4 0.6 0.8 1

-3

fitted probabilities
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tot

2

Tukey-Anscombe Plot 2

0
1

si
du

al
s

-2
-1

P
ea

rs
on

 re
.0 -3 -2 -1 0 1 2 3

-3
linear predictor

28



Applied Statistical RegrApplied Statistical Regr
HS 2010 – Week 09

T k A b PlTukey-Anscombe Plo
The Tukey-Anscombe plots iny p

xx <- predict(fit, type="re

id l (fi "yy <- residuals(fit, type="

scatter.smooth(xx, yy, fami

bli (h 0 lt 3)abline(h=0, lty=3)

Reasons:

- using a non-robust smoothe
- different types of residuals- different types of residuals
- on the x-axis: probs or linea

Marcel Dettling, Zurich University of Applied Sciences
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tot
n R are not perfect. Better use:p

esponse")

" ")"pearson")

ily="gaussian", pch=20)

er is a must
can be usedcan be used
ar predictor
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M Di tiMore Diagnostics
2

Residuals vs Lev

0
1

n 
re

si
d.

-2
-1

S
td

. P
ea

rs
on

4

-4
-3

S

Cook's distance68

0.00 0.02 0.04

Leverage
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glm(survival ~ I(log10(w

ressionression

verage

165

0.5

0.06 0.08

e

30

weight)) + age)


