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Extending the Linear Model

What is the problem?

- Want to model a binary response, or a proportion!
« Variance will not be equal
 Values beyond 0/1, or beyond [0,1] will result

We need some additional techniques which can deal with
these types of situations.

Depending on how the response variable is, there are
several different approaches.
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Logistic Regression
Example:

In human medicine, we are often interested in the question for

how much ,dose” of a medication we have an effect, i.e. a
reduction in pain or symptoms.

Data:

Patients, where each obtains some ,dose” and either has a
reduction (1), or not (0).

There may be some further predictors such as age, sex, ...

Marcel Dettling, Zurich University of Applied Sciences
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Simple Statistical Model

e A statistical model for this situation takes into account that for
a given “dose”, we will only have an effect on some of the
subjects, but not on all of them.

 We are thus trying to model the relation between the binary
response and a number of predictors.

The simplest approach is:

P(Y, =1) = B, + BiXy +...+ BX,
-> this will lead to probabilities beyond the interval of [O,1].
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A Better Model

 We obtain a better model if we transform the response variable
to a scale that ranges from minus to plus infinity.

« Usual choice is the so-called logit transformation:
p=In(p/(1-p))

We obtain the logistic regression model:

og[ P =D
1-P(Y, =1)

j:ﬂo +181Xi1 +-"+/6Xip

-> all fitted values are within [0O,1].
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Poisson Regression
What are predictors for the locations of starfish?

-> analyze the number of starfish at several locations, for which
we also have some covariates such as water temperature, ...

- the response variable is a count. The simplest model for this is
a Poisson distribution.

We assume that the parameter 4. at location i depends in a
linearly on the covariates:

Y, = Pois(4), Where 4 = f, + fiX, + ..+ B,

Marcel Dettling, Zurich University of Applied Sciences 6
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Log-Linear Models

Question:

Prediction of a nominal response variable

Example:

Which party does a person favor, depending on covariates
such as education, age, sex, region, ...

-> such data can be summarized with contingency tables

- and they can be modeled using log-linear models

i niversity of Applied Sciences
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Generalized Linear Models

What is it?

e General framework for regression type modeling
 Many different response types are allowed

* Notion: the expected value of the response has a monotone
relation to a linear combination of the predictors.

E[Yi] = g(ﬂo +181Xi1 T "'+IBpXip)
« Some further requirements on variance and density of Y

- may seem complicated, but is very powerful!
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Binary Logistic Regression
What is it?

- Response Y, €{0,1}

What do we need to take care of?

e Formulation of the model

e Estimation

e Inference

 Model diagnostics

« Model choice

ich University of Applied Sciences

Zurich University
eeeeeeeeeeeeeee



Zurich University
eeeeeeeeeeeeeee

Applied Statistical Regression Zh
HS 2010 — Week 09 aw

Example
Premature Birth, by Hubbard (1986)
Y. € {0,1} survival (1) /death (0) after premature birth.

Predictors:
- weight (in grams) at birth
- age at birth (in weeks of pregnancy)

- apgar scores (vital function after 1 and 5 min)
- pH-value of the blood (breathing)

Observations:

- there are 247 instances

ich University of Applied Sciences 10
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Example

Survival in Premature Birth
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Logistic Regression Model
- Y, €{0,1} has a Bernoulli distribution.
« The parameter of this distribution is 7, the success rate
Now please note that:
. =P(Y, =1) = E[Y.]

- the most powerful notion of the logistic regression model is to
see it as a model where we try to find a relation between the
expected value of Y. and the predictors!

Important:P(Y, =1) = £, + B X, +...+ 8%, is no good here!
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Logit Transformation

Goal: mapping from [0,1] > (—o0, +0)

Logit transformation: g(x) =log (%)
— 7T

Interpretation: Probabilities are mapped to log-odds ratios which
can then be modeled using a linear relation.

Iog P(Yi :1)
1-P(Y, =1)

j:ﬂo "':leil "'---"'IBXip

- where is the error term?
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Some Remarks

* For estimating the regression coefficients, the observations
need to be independent

 There is no restriction for the predictors. They can be
continuous, categorical, transformed, interactions, ...

o 7=+ fX.+..+ B,%, is called the linear predictor
e () isthe link function, mapping between E[Y;] and 7,

« There are other (less important) link functions:
- probit link
- c-log-log link

Marcel Dettling, Zurich University of Applied Sciences 14
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Survival vs. Linear Predictor

. g(P(Y =1| Ioglo(weight),age)) =-33.97+10.17-log,, (weight) + 0.14-age

Survival vs. Linear Predictor
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Estimation

Multiple linear regression:
- minimize sum of squared residuals!
can be solved in closed form

Logistic regression:
- maximum likelihood approach!

leads to a non-linear equation system that needs to be

solved with an iterative approach by weighted multiple
linear regressions.

Important:
- seems like a very different paradigm, but is it?

arcel Dettling, Zurich University of Applied Sciences
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Interpretation of the Coefficients
-> see blackboard...
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Inference

> summary(gIm(survival ~ 1(loglO(weight)) + age,
family = "binomial™, data = baby)

Deviance Residuals:

Coefficients: Estimate Std. Error z value Pr(>|z])
(Intercept) -33.97108 4.98983 -6.808 9.89e-12 ***
1(loglO(weight)) 10.16846 1.88160 5.404 6.51e-08 ***
age 0.14742 0.07427 1.985 0.0472 *

Null deviance: 319.28 on 246 degrees of freedom
Residual deviance: 235.94 on 244 degrees of freedom
AIC: 241.94

Marcel Dettling, Zurich University of Applied Sciences
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Individual Parameter Tests

Multiple Linear Regression:

Vo

Gaussian errors 2 S,

; are normally distributed

Logistic Regression:
There are no errors, variability arises from Bernoulli distribution

The regression coefficients ,31. are only approximately normally

distributed with a covariance matrix V that can be derived from
the coefficients.

Bj_ﬁ

Hence: Z= L~ N(0,2)

il
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Goodness-of-fit

Multiple Linear Regression:
Sum of Squared Residuals

Logistic Regression:

Residual Deviance
D(y,7) =-2)_ (¥, log(7,) + (- y,) log(1-7,))

- based on the log-likelihood
- In principle: comparison against fully saturated model

Zurich University
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Comparing Nested Models
Model 1. small model S, with g parameters
Model 2: big model B, with p parameters

Null hypothesis and test statistic:
HO :ﬂq+l :ﬁq+2 :"':ﬂp :O
2(N® —11®)=D(y,7)-D(y,z®)

Distribution of the test statistic:

S) nNnB) _ .2
D D X o-q
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Example with drop1()

> dropl(fit, test="Chisq")
Single term deletions
Model : survival ~ 1(loglO(weight)) + age
Df Deviance AIC LRT Pr(Chr)

<none> 235.94 241 .94

1(loglO(weight)) 1 270.19 274.19 34.247 4.855e-09 ***
age 1 239.89 243.89 3.948 0.04694 *
Question:

- where is the difference to the summary output?
- It exists, though it's not obvious and asymptotically vanishes

Marcel Dettling, Zurich University of Applied Sciences

22



Zurich University
eeeeeeeeeeeeeee

Applied Statistical Regression Zh
HS 2010 — Week 09 aw

AIC and Variable Selection
General remark:

All comparison between models of different size can also be
done using the AIC criterion. Not only in logistic regression, but
also here.

The criterion:
AIC =D(y,,7)+2p
Variable selection:

- stepwise approaches as with multiple linear regression
- factor variables need to be treated the right way!

ich University of Applied Sciences 23
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Null Deviance

Smallest model:

- The smallest model is without predictors, only with intercept
- Fitted values will all be equal to 7,

- Our best fit (F) and the smallest model (O) are nested

A global test:
2(N1° —N®)=D(y,7?)-D(y,z)
Example:

Null deviance: 319.28 on 246 degrees of freedom
Residual deviance: 235.94 on 244 degrees of freedom

arcel Dettling, Zurich University of Applied Sciences
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Model Diagnostics

Diagnostics are:

e as important with logistic regression as they are with multiple
linear regression models

« again based on differences between fitted & observed values

- we now have to take into account that the variances are not
equal for the different instances.

- we have to come up with novel types of residuals:

Pearson and Deviance residuals

Marcel Dettling, Zurich University of Applied Sciences 25
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Pearson Residuals

Take the difference between observed an fitted value and divide
by an estimate of the standard deviation:

o N

R__ Ji~%
| \/ﬁi(l_ Ai)

- Ri2 IS the contribution of the ith observation to the Pearson
statistic for model comparison.

—> It is important to note that Pearson residuals exceeding a
value of two in absolute value warrant a closer look

Marcel Dettling, Zurich University of Applied Sciences 26
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Deviance Residuals

Take the contribution of the ith observation to the log-likelihood,
l.e. the chi-square statistic for model comparison.

d; = (yi log (%j"’ (1-y:) Iog(;‘::;; jj

For obtaining a well interpretable residual, we take the square

root and the sign of the difference between true and fitted value:

D, =sign(y, _7’2\-i) ' \/CT.

-=> It is important to note that Pearson residuals exceeding a
value of two in absolute value warrant a closer look

ich University of Applied Sciences
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Tukey-Anscombe Plot 1

Pearson residuals

0.2 0.4 0.6 0.8 1.0

fitted probabilities
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Tukey-Anscombe Plot
The Tukey-Anscombe plots in R are not perfect. Better use:

XX <- predict(fit, type="response")

yy <- residuals(fit, type="'pearson’)
scatter.smooth(xx, yy, family="'gaussian', pch=20)
abline(h=0, 1ty=3)

Reasons:

using a non-robust smoother is a must
different types of residuals can be used
on the x-axis: probs or linear predictor

Marcel Dettling, Zurich University of Applied Sciences 29
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More Diagnhostics

Residuals vs Leverage

Std. Pearson resid.
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Leverage
alm(survival ~ [(log10(weight)) + age)
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