Zurich University of Applied Sciences

Applied Statistical Regression HS 2010 – Week 08

Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, November 15, 2010

Missing Data

The best thing to do is certainly to go and find the missing values. Often, this is impractical or impossible. Thus, ...

\rightarrow ask the question WHY the data are missing?

- Just *randomly*, non-informatively for the analysis goal.
 Fixing up missing data is comparatively easy.
- **Systematically** with respect to the goal of the analysis. Example: patients who dropped out of a drug study because they believed their treatment was not working.

Case 1 is tractable, case 2 is notoriously difficult!

Fix-Up Alternatives

If the missing are non-systematic, we can do the following:

- 1) Omitting incomplete cases
 → OK if only a small proportion of cases is incomplete
- Filling-in missing data with the mean
 → quick and easy, but not always very accurate
- Filling-in missing data by regression
 → regress a predictor on the other predictors
- 4) Sophisticated approaches, EM-algorithm
 → treating the missing values as nuisance parameters

Zurich University of Applied Science

Experimentation Setup

- State dataset from last week:
 - Life.Exp ~ Murder + Frost + HS.Grad + Pop
- Random deletion of some five observations:
 - Murder (2 NA introduced)
 - Frost (3 NA introduced)
- This is more interesting than to work with a dataset with true missings: we can study the influence of different imputation methods.

Applied Statistical Regression HS 2010 – Week 08 Example: Plain R fit

> summary(lm(Life.Exp ~ Population + Murder + HS.Grad + Frost, state)

Estimate Std. Error t value Pr(>|t|)

(Intercept)	68.43923	1.91211	35.793	< 2e-16	* * *
Population	0.31831	0.11248	2.830	0.007247	* *
Murder	-1.43049	0.17821	-8.027	7.26e-10	* * *
HS.Grad	5.75964	1.45363	3.962	0.000298	* * *
Frost	-0.10537	0.03838	-2.746	0.009006	* *

Residual standard error: 0.6824 on 40 degrees of freedom

(5 observations deleted due to missingness) Multiple R-squared: 0.7515, Adjusted R-squared: 0.7266 F-statistic: 30.24 on 4 and 40 DF, p-value: 1.293e-11

Zurich University

Filling-in Missing Data with the Mean

The 3 missing data points in variable Frost are replaced by the overall mean value in this variable

- > missings <- which(is.na(state.trsf\$Frost))</pre>
- > mean.Frost <- mean(state.trsf\$Frost, na.rm=TRUE)</pre>
- > state.trsf\$Frost[missings] <- mean.Frost</pre>
- The replacement value is 9.85, when the removed ones were 0, 10.68 and 13.19 for Hawaii, Kansas and New Hampshire.
- Apply strategy 2) only in problems where there are many predictors and in only few, data are missing – then it's OK to profit from the information which in the other predictors.

Results from Strategy 2)

>	Coefficients:	Estimate	Std.	Error	t	value	Pr(>	t)	
---	---------------	----------	------	-------	---	-------	----------------	---	---	--

(Intercept)	66.80292	1.98216	33.702	< 2e-16	* * *
Population	0.36425	0.12058	3.021	0.004233	* *
Murder	-1.34124	0.18860	-7.112	8.87e-09	***
Frost	-0.03007	0.04800	-0.626	0.534333	
HS.Grad	6.15488	1.50475	4.090	0.000185	* * *

Residual standard error: 0.7298 on 43 degrees of freedom

(2 observations deleted due to missingness) Multiple R-squared: 0.7288, Adjusted R-squared: 0.7036 F-statistic: 28.89 on 4 and 43 DF, p-value: 1.092e-11

Zurich University

Filling-in Missing Data with Regression

Predict the missing observations in Frost from a regression of the form: *Frost ~ Population + Murder + HS.Grad*:

missing <- which(is.na(state.trsf\$Frost))
fit.imp <- lm(Frost~Population+Murder+HS.Grad, state.trsf)
predval <- predict(fit.imp, newdata=state.trsf[missing,])
state.trsf\$Frost[missing] <- pred.val</pre>

→ Needs collinear predictors, doubtful here!

> pred.val

HI KS NH 11.43693 11.00075 12.27640

zh aw

Results from Strategy 3)

Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept)	66.57107	2.00466	33.208	< 2e-16	* * *
Population	0.37502	0.12243	3.063	0.003771	* *
Murder	-1.32308	0.19082	-6.934	1.60e-08	* * *
Frost	-0.01595	0.04908	-0.325	0.746796	
HS.Grad	6.10990	1.51291	4.039	0.000218	* * *

Residual standard error: 0.7322 on 43 degrees of freedom

(2 observations deleted due to missingness) Multiple R-squared: 0.727, Adjusted R-squared: 0.7016 F-statistic: 28.62 on 4 and 43 DF, p-value: 1.256e-11

Zurich University of Applied Sciences

Applied Statistical Regression HS 2010 – Week 08

Synopsis

- It is not so simple *regenerate* and *impute* missing information
- While the mean or regression *fill-in methods* may provide an advantage, they are often *useless* or even *make things worse*
- Their *success* depends on the collinearity of the predictors imputed values are better with more *collinear predictors*
- Both *fill-in* techniques will introduce a *bias towards zero* in the regression coefficients while tending to *reduce the variance*.
- When a *substantial proportion of the data is missing*,1-3) tend not to work well. Use *more sophisticated approaches* then!

Modeling Strategies

 In which order to apply: estimation – diagnostics – transformation – variable selection???

There is no definite answer to this: regression analysis is the search for structure in the data and there are no hard-and-fast rules about how it should be done.

Professional regression analysis can be seen as an art and definitely requires skill an expertise – one must be alert to unexpected structure in the data.

 \rightarrow We here provide a rough guideline for regression analysis

Guideline for Regression analysis

0) Preprocessing the data

- learning the meaning of all variables
- give short and informative names
- check for impossible values, errors
- if they exist: set them to NA
- systematic or random missings?

1) First-aid transformations

- bring all variables to a suitable scale
- use statistical and specific knowledge
- routinely apply the first-aid transformations

Guideline for Regression analysis

- 2) Fitting a big model
 - First fit a big model with potentially too many predictors
 - use all if p < n/5
 - preselect manually according to previous knowledge
 - preselect with forward search and a p-value of 0.2

3) Model Diagnostics

Check for normality, constant variance, uncorrelated errors:

- transformations
- robust regression
- weighted regression
- dealing with correlation

Guideline for Regression analysis

6) Interactions

- try (two-way) interactions
- do only use predictors that are in the model

7) Influential data points

- attractors for the regression line
- keep them or skip them?
- compare with and without

8) Do model and coefficients make sense?

- implausible predictors, wrong signs, against theory, ...
- remove if there are no drastic changes!

Zurich University of Applied Science

Guideline for Regression analysis

If there were substantial changes to the model in steps 4-8), then one should go back to 3) and repeat the diagnostics.

Hypothesis testing:

- proceed similarly
- careful: transformations, selection, collinearity
- question dictates what works and what not!

Prediction:

- guideline is still reasonable
- we are a little less picky here in selection and diagnostics
- check generalization error with test data / cross validation

Significance vs. Relevance

The larger a sample, the smaller the p-values for the very same predictor effect. Thus do not confuse a small p-values with an important predictor effect!!!

With large datasets:

- statistically significant results which are practically useless
- we have high evidence that a blood value is lowered by 0.1%

Models are approximative:

- most predictors have influence, thus $\beta_1 = 0$ never holds
- point null hypothesis is usually wrong in practice
- we just need enough data to be able to reject it