Zurich University of Applied Sciences

Applied Statistical Regression HS 2010 – Week 06

Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, November 1, 2010

Dummy Variables

So far, we only considered continuous predictors:

- temperature
- distance
- pressure
- ...

It is perfectly valid to have categorical predictors, too:

- sex (male or female)
- status variables (employed or unemployed)
- working shift (day, evening, night)

\rightarrow Implementation in the regression with dummy variables

- . . .

Example: Binary Categorical Variable

The lathe dataset:

- Y lifetime of a cutting tool in a lathe
- x_1 speed of the machine in rpm
- x_2 tool type A or B

Dummy variable encoding:

$$x_2 = \begin{cases} 0 & tool \ type \ A \\ 1 & tool \ type \ B \end{cases}$$

Zurich University of Applied Sciences

Applied Statistical Regression HS 2010 – Week 06

Interpretation of the Model

 \rightarrow see blackboard...

```
> summary(lm(hours ~ rpm + tool, data = lathe))
Coefficients:
```

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	36.98560	3.51038	10.536	7.16e-09	* * *
rpm	-0.02661	0.00452	-5.887	1.79e-05	* * *
toolB	15.00425	1.35967	11.035	3.59e-09	* * *

Residual standard error: 3.039 on 17 degrees of freedom Multiple R-squared: 0.9003, Adjusted R-squared: 0.8886 F-statistic: 76.75 on 2 and 17 DF, p-value: 3.086e-09

The Dummy Variable Fit

rpm

5

A Model with Interactions

Question: do the slopes need to be identical?

 \rightarrow with the appropriate model, the answer is no!

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$$

 \rightarrow see blackboard for model interpretation...

Zurich University

Different Slope for the Regression Lines

Durability of Lathe Cutting Tools: with Interaction

rpm

Summary Output

> summary(lm(hours ~ rpm * tool, data = lathe))

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	32.774760	4.633472	7.073	2.63e-06	* * *
rpm	-0.020970	0.006074	-3.452	0.00328	* *
toolB	23.970593	6.768973	3.541	0.00272	* *
rpm:toolB	-0.011944	0.008842	-1.351	0.19553	

Residual standard error: 2.968 on 16 degrees of freedom Multiple R-squared: 0.9105, Adjusted R-squared: 0.8937 F-statistic: 54.25 on 3 and 16 DF, p-value: 1.319e-08

Zurich University of Applied Sciences

Applied Statistical Regression HS 2010 – Week 06

How Complex the Model Needs to Be?

Question 1: do we need different slopes for the two lines?

 $H_0: \beta_3 = 0$ against $H_A: \beta_3 \neq 0$

 \rightarrow individual parameter test for the interaction term!

Question 2: is there any difference altogether?

 $H_0: \beta_2 = \beta_3 = 0$ against $H_A: \beta_2 \neq 0$ and / or $\beta_3 \neq 0$

- \rightarrow this is a partial F-test
- \rightarrow we try to exclude interaction and dummy variable together

R offers convenient functionality for these tests!

zh aw

Anova Output

Summary output for the interaction model

> fit1 <- lm(hours ~ rpm, data=lathe)
> fit2 <- lm(hours ~ rpm * tool, data=lathe)
> anova(fit1, fit2)
Model 1: hours ~ rpm
Model 2: hours ~ rpm * tool
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 18 1282.08
2 16 140.98 2 1141.1 64.755 2.137e-08 ***

→ no different slopes, but different intercept!

Zurich University of Applied Sciences

Applied Statistical Regression HS 2010 – Week 06

Categorical Input with More than 2 Levels

There are now 3 tool types A, B, C:

 $\begin{array}{cccc} x_2 & x_3 \\ 0 & 0 & for \ observations \ of \ type \ A \\ 1 & 0 & for \ observations \ of \ type \ B \\ 0 & 1 & for \ observations \ of \ type \ C \end{array}$

Main effect model: $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$

With interactions: $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_1 x_2 + \beta_5 x_1 x_3 + \varepsilon$

Three Types of Cutting Tools

Durability of Lathe Cutting Tools: 3 Types

rpm

Applied Statistical Regression HS 2010 – Week 06 Summary Output

> summary(lm(hours ~ rpm * tool, data = abc.lathe)

Coefficients:Estimate		Std. Error	t value	Pr(> t)	
(Intercept)	32.774760	4.496024	7.290	1.57e-07	* * *
rpm	-0.020970	0.005894	-3.558	0.00160	* *
toolB	23.970593	6.568177	3.650	0.00127	* *
toolC	3.803941	7.334477	0.519	0.60876	
rpm:toolB	-0.011944	0.008579	-1.392	0.17664	
rpm:toolC	0.012751	0.008984	1.419	0.16869	

Residual standard error: 2.88 on 24 degrees of freedom Multiple R-squared: 0.8906, Adjusted R-squared: 0.8678 F-statistic: 39.08 on 5 and 24 DF, p-value: 9.064e-11 Marcel Dettling, Zurich University of Applied Sciences

of Applied Scie

Inference with Categorical Predictors

Do not perform individual hypothesis tests on factors!

Question 1: do we have different slopes?

 $H_0: \beta_4 = 0 \text{ and } \beta_5 = 0 \text{ against } H_A: \beta_4 \neq 0 \text{ and } / \text{ or } \beta_5 \neq 0$

Question 2: is there any difference altogether?

 $H_0: \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$ against $H_A: any of \beta_2, \beta_3, \beta_4, \beta_5 \neq 0$

 \rightarrow Again, R provides convenient functionality

Anova Output

> anova(fit.abc)

Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
rpm	1	139.08	139.08	16.7641	0.000415	* * *
tool	2	1422.47	711.23	85.7321	1.174e-11	* * *
rpm:tool	2	59.69	29.84	3.5974	0.043009	*
Residuals	24	199.10	8.30			

→ strong evidence that we need to distinguish the tools!
→ weak evidence for the necessity of different slopes

Transformations

Scope:

• For both response and the predictors

Goals:

- Dealing with violated model assumptions
- Extension to linear modeling
- More versatility

Transformations: Example

Daily Cost in Rehabilitation vs. ADL-Score

Zurich University

Transformations: Example

Zurich University

Transformations: Example

Problems with this Example

Non-zero expectation:

• visible with the Tukey-Anscombe plot

Non-constant variance:

• apparent in the Scale-Location plot

Skewed residuals:

very prominent in the Normal plot

Unwanted negative values:

• prediction interval is partly below zero

Positive Skewness:

- Unwanted
- Often present...

Logged Response Model

We transform the response variable and try to explain it using a linear model with our previous predictors:

$$Y' = \log(Y) = \beta_0 + \beta_1 x + \varepsilon$$

In the original scale, we can write the logged response model using the same predictors:

$$Y = \exp(\beta_0 + \beta_1 x) \cdot \exp(\varepsilon)$$

→ Multiplicative model

→ $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$, and thus, $\exp(\varepsilon)$ has a lognormal distribution

Zurich University of Applied Sciences

Applied Statistical Regression HS 2010 – Week 06

Does It Work?

zh aw

Zurich University of Applied Sciences

Does It Work?

Improvements with the Logged Response

Non-zero expectation:

• much better now!

Non-constant variance:

better now, some over-correction?

Skewed residuals:

• now perfectly symmetric, and a bit long-tailed

Unwanted negative values:

issue solved!

Zurich University

Dealing with Zero Response

- Logged response model is only applicable when the response is strictly positive...
- What if there are some cases with Y = 0?
 - never omit these
 - additive shifting is possible
- How to additively shift?
 - usual choice: c=1
 - not good, because effect is scale-dependent

→ Shift with the value of the smallest positive observation!

Zurich University

Back Transforming the Fitted Values

• In principle, we can "simply back transform"

 $\hat{y} = \exp(\hat{y}')$

- This is an estimate for the median, but not the mean!
- If unbiased estimation is required, then use:

$$\hat{y} = \exp\left(\hat{y}' + \frac{\hat{\sigma}_{\varepsilon}^2}{2}\right)$$

Confidence/prediction intervals are not problematic
 [l,u] → [exp(l),exp(u)]

Back Transforming: Example

Daily Cost in Rehabilitation vs. ADL-Score

Zurich University

Interpretation of the Coefficients

Important: there is no back transformation for the coefficients to the original scale, but still a good interpretation

$$log(\hat{y}) = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

$$\hat{y} = exp(\hat{\beta}_0) exp(\hat{\beta}_1 x_1) \dots exp(\hat{\beta}_p x_p)$$

An increase by one unit in x_1 would multiply the fitted value in the original scale with $\exp(\hat{\beta}_1)$.

→ Coefficients are interpreted multiplicatively!

First-Aid Transformations

There are more transformations than the logged response model!

First-Aid Transformations:

 \rightarrow do always apply these (if no practical reasons against it)

 \rightarrow to both response and predictors

Absolute values and concentrations:

log-transformation: $y' = \log(y)$

Count data:

square-root transformation: $y' = \sqrt{y}$

Proportions:

arcsine transformation: $y' = \sin^{-1}(\sqrt{y})$

Marcel Dettling, Zurich University of Applied Sciences