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Course Organization

The exercises will be held on the days that were planned
according to the schedule given on the organization sheet!

NEW: the exercise lessons will (until further notice) ALWAYS
take place at the computer labs, i.e. in the following rooms:

HG E27 Ag — Go
HG E26.1 Ha — Pa
HG E26.3 Pe — Zh
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Multiple Linear Regression

The model Is:

Yi = fy + BXg + BoXip T+ BoX, + &

Assumptions:
- E[¢]=0, l.e. the hyper plane is the correct fit
- Var(g) = o’ , constant scatter for the error term

- Cov(g,&;) =0, uncorrelated errors
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An Example

City Mortality| JanTemp| JulyTemp|RelHum| Rain[ Educ] Dens| NonWhite| WhiteCollar Pop| House| Incomel HC|[ NOx| SO2
Akron, OH 921.87 27 71 59 36| 11.4 3243 8.8 42.6| 660328] 3.34] 29560, 21 15| 59
Albany, NY 997.87 23 72 57| 35 11] 4281 35 50.7| 835880 3.14| 31458 8 100 39
Allentown, PA 962.35 29 74 54| 44| 9.8 4260 0.8 39.4] 635481 3.21] 31856 6 6] 33
Atlanta, GA 982.29 45 79 56| 47| 11.1] 3125 27.1 50.2{2138231| 3.41] 32452 18 8l 24
Baltimore, MD | 1071.29 35 77 55 43| 9.6 6441 24.4 43.7|2199531] 3.44] 32368 43 38[ 206
Birmingham, AL | 1030.38 45 80 54| 53| 10.2] 3325 38.5 43.1] 883946| 3.45| 27835 30 32[ 72

Marcel Dettling, Zurich University of Applied Sciences



Zurich University
eeeeeeeeeeeeeee

Applied Statistical Regression Zh
HS 2010 — Week 04 aw

Properties of the Estimates
Gauss-Markov-Theorem:

The regression coefficients are unbiased estimates, and they
fulfill the optimality condition of minimal variance among all
linear, unbiased estimators (BLUE).

- E[fl=p
- Cov(B)=0”-(XTX)™"

- 1
- 0° = Z r’ (note: degrees of freedom!)
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If the Errors are Gaussian...

While all of the above statements hold for arbitrary error
distribution, we obtain some more, very useful properties by
assuming i.i.d. Gaussian errors:

- B~N(B.o2(X"X)")

- Y~N(XB,0.H)

2
_ I\2 — Gg
O-g Zn—p

n—p

What to do if the errors are non-Gaussian?
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Individual Parameter Tests

If we are interested whether the | predictor variable is
relevant, we can test the hypothesis

Hy:f5;,=0
against the alternative hypothesis
H,:p;, #0

We can derive the test statistic and its distribution:

e

B
J 2(XTX);

n—(p+l)
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Individual Parameter Tests

These tests quantify the effect of the predictor x; on the

response Y after having subtracted the linear effect of all other
predictor variables on Y.

Be careful, because of:

a) The multiple testing problem: when doing many tests, the
total type Il error increases. By how much: see blackboard

b) It can happen that all individual tests do not reject the null
hypothesis, although some predictors have a significant
effect on the response. Reason: correlated predictors!
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Global F-Test

Question: is there any relation between predictors and response?

We test the null hypothesis
Ho b =5 :"':IBp =0
against the alternative
H,:B;#0 foratleastonejinl,..p

The test statistic Is:

= (p+]) Z(y. y)’
P Z(yi_yi

F =

p.n—(p+1)



Zurich University
ccccccccccccccc

Applied Statistical Regression Zh
HS 2010 — Week 04 aw

Partial F-Tests
Test the effects of p-q predictors simultaneously!
We divide the model into 2 parts
Y=XL+e=X B +X,B,+¢&
So that we can test the hypotheses
H,:3,=0 versus H,: 4, #0
We compute

SSR,, 1> (¥, -¥,)* and SSR, :> (J~V,)?
i=1 i=1



Zurich University
eeeeeeeeeeeeeee

Applied Statistical Regression Zh
HS 2010 — Week 04 aw

Partial F-Tests

Test the effects of p-q predictors simultaneously!

The test statistic Is

n-p-1 SSRHA — SSRHO

P~ 3 (y, - 9%’
=1

F ~ F

p_q’n_ p_l

Where do we need this?

- meteorological variables in the mortality dataset
- later, when we work with factor/dummy variables

11
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Coefficient of Determination

The coefficient of determination, also called multiple R-
squared, is aimed at describing the goodness-of-fit of the
multiple linear regression model:

3 (5, - )
R® = iil <[0,1]
Z(yi _V)Z

It shows the proportion of the total variance which has been
explained by the predictors. The extreme cases 0 and 1
mean:...

Marcel Dettling, Zurich University of Applied Sciences 12
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Adjusted Coefficient of Determination

If we add more and more predictor variables to the model, R-
squared will always increase, and never decreases

Is that a realistic goodness-of-fit measure?
- NO, we better adjust for the number of predictors!

n—1 ;(yi_yi)z

adjR* =1- (01D <
n—(p+ (y — V)’
Yi_y)

c[0,1]

13
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R-Output
> summary(Im(Mortality~log(S02)+NonWhite+Rain, data=mo..))

Coefficients:
Estimate Std. Error t value Pr(c|t])
(Intercept) 773.0197 22.1852 34.844 < 2e-16 ***

109(S02) 17 .5019 3.5255 4.964 7.03e-06 ***
NonWhite 3.6493 0.5910 6.175 8.38e-08 ***
Rain 1.7635 0.4628 3.811 0.000352 ***

Residual standard error: 38.4 on 55 degrees of freedom
Multiple R-squared: 0.641, Adjusted R-squared: 0.6214
F-statistic: 32.73 on 3 and 55 DF, p-value: 2.834e-12

Marcel Dettling, Zurich University of Applied Sciences 14
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Interpreting the Result

Does the SO2 concentration affect the mortality?
- Might be, might not be

- There are only 3 predictors

- We could suffer from confounding effects

- Causality is always difficult, but...

The next step Is to include all predictor variables that are
present in the mortality dataset.

| ling, Zurich University of Applied Sciences
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More Predictors

Estimate Std. Error t value
.939e+02
.930e-01
.939e+00
.105e+00
.490e-01
.449e+00
.482e-03
.012e+00
.264e+00
.053e-06
.040e+01
.328e-03
.426e+00

(Intercept) 1.

JanTemp -1.
JulyTemp -1.
RelHum 7.
Rain 1.
Educ -1
Dens 5.
NonWhite 5.
WhiteCollar -1.
Pop 2.
House -2.
Income 2.
10g(502) 6.
Residual

164e+03
669e+00
167e+00
017e-01
224e+00

-108e+01

623e-03
080e+00
925e+00
071e-06
216e+01
430e-04
833e+00

standard error:
Multiple R-squared: 0.7333,
F-statistic: 10.54 on 12 and 46 DF,

Marcel Dettling, Zurich University of Applied Sciences

ORADMNRPRRPNOUORERNN

-960
-105
.602
.635
.229
2173
.255
.019
.923
.o011
.948
-183
.239

Pr>1tl)

OOOOOOOOOOOOOO

-000258

.040790
.550207
.528644
.030742
.246981
.215940
.25e-06
.134623
.611799
.586074
.855617
.214262

Eala oy

*

Eala oy

36.2 on 46 degrees of freedom

p-value:

Adjusted R-squared: 0.6637
1.417e-09

Zurich University
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Some Thoughts on Collinearity

a) With collinear predictors, inference (i.e. interpreting p-
values from individual parameter tests and the global F-
test) should be “handled with care”!

b) Drawing conclusions on causality should be left out.

c) However, the fitted values are not affected by this, and also
prediction with a model fitted from collinear predictors is
always fine.

Measuring collinearity: VIF; = 1R

J

Marcel Dettling, Zurich University of Applied Sciences 17
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Model Diagnostics
Why do we need to do this?

a) make sure that estimates and inference are valid
- E[g]=0
- Var(g) =0
- Cov(g,g,)=0
- & ~N(0,57°1), iid

b) improving the model (better fit, reliable conclusions)
- variable transformations
- further predictors or interactions between them
- weighted regression or more general model

ich University of Applied Sciences 18
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What Tools Do We Have?

Tukey-Anscombe plot
Normal plot
Scale-Location plot
Serial Correlation plot
Cook's Distance
Leverage plot

Residuals vs. predictors

ich University of Applied Sciences
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Outliers and Influential Data Points

Nothing Special Leverage Point Without Influence

Marcel Dettling, Zurich University of Applied Sciences 20
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Outliers and Influential Data Points

Leverage Point With Influence Outlier Without Influence

Marcel Dettling, Zurich University of Applied Sciences 21
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How To ldentify These Points?

1) Poor man‘s approach
Redo the analysis n times by excluding each data point

2) Leverage
If we changey, by Ay, then hAy, is the change in Y,
High leverage for a data point (h. >2(p+1)/n) means
that it forces the regression line to fit well to it.

3) Cook's Distance
D. = Z(S\/J _yj(i))2 _ h. | ri*z
I (p‘|‘:|.)(752 l_hii (p—i—l)
Be careful if Cook‘s Distance > 1.

ich University of Applied Sciences 22
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Model Diagnostics: Example

Tukey-Anscombe Plot
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Standardized residuals
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Model Diagnostics: Example

Scale-Location Plot
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Model Diagnhostics:

Cook's Distance
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Example

Standardized residuals

Leverage Plot
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Model Diagnostics: Conclusions
Conclusions from the model diagnostics:

- there are 2 influential data points: York and New Orleans
- they do not seem to be very strongly influential, but still:
- better to re-run the analysis without these and check results

Results from that analysis:

- 10g(S0O2) is significant again!!!

- Residual standard error smaller

- Coefficient of determination higher
- Thus: better fit!

ich University of Applied Sciences 26
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Why Are They Influential?

Population Density
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