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Course Organization
The exercises will be held on 
according to the schedule giveg g

NEW: the exercise lessons wi
take place at the computer labtake place at the computer lab

HG E27 Ag – G
HG E26.1 Ha – P
HG E26.3 Pe – Z
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n
the days that were planned 
en on the organization sheet!g

ill (until further notice) ALWAYS 
bs i e in the following rooms:bs, i.e. in the following rooms:

Go
Pa
Zh 
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Multiple Linear Regre
The model is:The model is:

0 1 1 2 2i i iY x xβ β β= + +

Assumptions:

0 1 1 2 2i i iY x xβ β β+ +

Assumptions:

- , i.e. the hyper plan[ ] 0iE ε =

- , constant scatt

uncorrelate

2( )iVar εε σ=

( ) 0C- , uncorrelate( , ) 0i jCov ε ε =
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ession

... i ixβ ε+ + +... p ip ixβ ε+ + +

ne is the correct fit

ter for the error term

ed errorsed errors
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An Example

City Mortality JanTemp JulyTemp RelHum Rain Ed

Akron, OH 921.87 27 71 59 36 11

Albany, NY 997.87 23 72 57 35

Allentown, PA 962.35 29 74 54 44 9

Atlanta GA 982 29 45 79 56 47 11Atlanta, GA 982.29 45 79 56 47 11

Baltimore, MD 1071.29 35 77 55 43 9

Birmingham, AL 1030.38 45 80 54 53 10
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uc Dens NonWhite WhiteCollar Pop House Income HC NOx SO2

1.4 3243 8.8 42.6 660328 3.34 29560 21 15 59

11 4281 3.5 50.7 835880 3.14 31458 8 10 39

9.8 4260 0.8 39.4 635481 3.21 31856 6 6 33

1 1 3125 27 1 50 2 2138231 3 41 32452 18 8 241.1 3125 27.1 50.2 2138231 3.41 32452 18 8 24

9.6 6441 24.4 43.7 2199531 3.44 32368 43 38 206

0.2 3325 38.5 43.1 883946 3.45 27835 30 32 72
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Properties of the EstProperties of the Est
Gauss-Markov-Theorem:

The regression coefficients ar
fulfill the optimality condition ofulfill the optimality condition o
linear, unbiased estimators (B

- ˆ[ ]E β β=

- 2 1( ) ( )TCov X Xεβ σ −= ⋅

1
- 2 2

1

1ˆ
( 1)

n

i
i

r
n pεσ

=

=
− + ∑
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timatestimates

re unbiased estimates, and they 
of minimal variance among allof minimal variance among all 
BLUE).

(note: degrees of freedom!)
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If th E GIf the Errors are Gaus
While all of the above statemeWhile all of the above stateme
distribution, we obtain some m
assuming i.i.d. Gaussian errorg

- ( )2 1ˆ ~ , ( )TN X Xεβ β σ −

-

( ), ( )εβ β

2ˆ ~ ( , )y N X Hεβ σ

-

( )y εβ
2

2ˆ ~ n p
ε

ε
σσ χ −

What to do if the errors are no

pn p−

What to do if the errors are no
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issian…
ents hold for arbitrary errorents hold for arbitrary error 
more, very useful properties by 
rs:

on-Gaussian?
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I di id l P tIndividual Parameter
If we are interested whether thIf we are interested whether th
relevant, we can test the hypo

: 0H β =

against the alternative hypoth

0 : 0jH β =

g yp

: 0A jH β ≠

We can derive the test statisti

β̂
2 1

~
ˆ ( )

j
nT

jj

T t
X Xε

β

σ
−−

=
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T tr Tests
he jth predictor variable ishe j predictor variable is 
othesis                   

esis

c and its distribution:

( 1)p− +
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I di id l P tIndividual Parameter
These tests quantify the effecThese tests quantify the effec
response Y after having subtr
predictor variables on Y. p

Be careful, because of:

a) The multiple testing proble
total type II error increases

b) It can happen that all indiv
hypothesis although somehypothesis, although some
effect on the response. Re
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T tr Tests
t of the predictor xj on thet of the predictor xj on the 

racted the linear effect of all other 

em: when doing many tests, the 
s. By how much: see blackboard

vidual tests do not reject the null 
e predictors have a significante predictors have a significant 
eason: correlated predictors!
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Gl b l F T tGlobal F-Test
Question: is there any relationQuestion: is there any relation

We test the null hypothesis 

against the alternative

0 1 2: ... pH β β β= = = =

against the alternative

for at least o: 0A jH β ≠

The test statistic is:
A jβ

n
2

1

ˆ( )
( 1)

n

i
i
n

y y
n pF =

−
− +

= ⋅
∑

2

1

ˆ( )
n

i i
i

p y y
=

−∑

ressionression

n between predictors and response?n between predictors and response?

0

one j in 1,…, p

2

, ( 1)~ p n pF − +
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P ti l F T tPartial F-Tests
Test the effects of p-q predictoTest the effects of p q predicto

We divide the model into 2 pa

So that we can test the hypoth

1 1 2Y X X Xβ ε β= + = +

So that we can test the hypoth

versus0 2: 0H β = AH

We compute 

0 2β A

n

and
0

2

1

ˆ: ( )H i i
i

SSR y y
=

−∑

ressionression

ors simultaneously!ors simultaneously!

arts

heses

2 2β ε+

heses

2: 0β ≠2β

n

d % 2

1

ˆ: ( )
AH i i

i

SSR y y
=

−∑
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P ti l F T tPartial F-Tests
Test the effects of p-q predictoTest the effects of p q predicto

The test statistic is

1 AH
n

SSRn pF
−− −

= ⋅

1
( i

i

p q y
=

− −∑

Where do we need this?

- meteorological variables in t
- later, when we work with fac

ressionression

ors simultaneously!ors simultaneously!

0
, 1~H

p q n p

SSR
F − − −

−
,

% 2ˆ )
p q p

iy−

he mortality dataset
ctor/dummy variables
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C ffi i t f D tCoefficient of Determ
The coefficient of determinatioThe coefficient of determinatio
squared, is aimed at describin
multiple linear regression modp g

2ˆ( )
n

iy y−∑
2 1

2

( )
[0,

( )

i
i
n

y y
R

y y

== ∈
−

∑

∑

It shows the proportion of the

1

( )i
i

y y
=
∑

It shows the proportion of the 
explained by the predictors. T
mean:mean:…
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i timination
on, also called multiple R-on, also called multiple R
ng the goodness-of-fit of the 
del:

,1]

total variance which has beentotal variance which has been 
The extreme cases 0 and 1 
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Adj t d C ffi i tAdjusted Coefficient 
If we add more and more predIf we add more and more pred
squared will always increase, 

I th t li ti d fIs that a realistic goodness-of-
NO, we better adjust for t

12 11
( 1)
nadjR

n p
−

= − ⋅
− +
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f D t i tiof Determination
dictor variables to the model, R-dictor variables to the model, R
and never decreases

f fit ?f-fit measure?
the number of predictors!

2ˆ( )
n

i iy y−∑
1

2

( )
[0,1]

( )

i i
i

n

y y

y y

=⋅ ∈
−

∑

∑
1

( )i
i

y y
=
∑
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R O t tR-Output
> summary(lm(Mortality~log(SO2 summary(lm(Mortality log(SO2

Coefficients:

Estimate Std. Erro

(Intercept) 773.0197    22.185

log(SO2)     17.5019     3.525

NonWhite      3.6493     0.591

R i 1 7635 0 462Rain          1.7635     0.462

---

Resid al standa d e o 38 4Residual standard error: 38.4 

Multiple R-squared: 0.641,  Ad

F statistic: 32 73 on 3 and 55F-statistic: 32.73 on 3 and 55

Marcel Dettling, Zurich University of Applied Sciences
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2)+NonWhite+Rain, data=mo…))2) NonWhite Rain, data mo…))

or t value Pr(>|t|)    

52  34.844  < 2e-16 ***

55   4.964 7.03e-06 ***

10   6.175 8.38e-08 ***

28 3 811 0 000352 ***28   3.811 0.000352 ***

on 55 deg ees of f eedomon 55 degrees of freedom

djusted R-squared: 0.6214

5 DF p value: 2 834e 12

14

5 DF,  p-value: 2.834e-12
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I t ti th RInterpreting the Resu
Does the SO2 concentration aDoes the SO2 concentration a

Might be, might not be

There are only 3 predictors

We could suffer from confoWe could suffer from confo

Causality is always difficult

The next step is to include all 
present in the mortality datase
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ltult
affect the mortality?affect the mortality?

s

ounding effectsounding effects

t, but…

predictor variables that are 
et.
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More PredictorsMore Predictors

Estimate Std. Er
(Intercept)  1.164e+03  2.939ep
JanTemp     -1.669e+00  7.930e
JulyTemp    -1.167e+00  1.939e
RelHum       7.017e-01  1.105e
Rain         1.224e+00  5.490e
Educ        -1.108e+01  9.449e
Dens         5.623e-03  4.482e
NonWhite     5.080e+00  1.012e
WhiteCollar -1.925e+00  1.264e
Pop          2.071e-06  4.053ep
House       -2.216e+01  4.040e
Income       2.430e-04  1.328e
log(SO2)     6.833e+00  5.426e
---
Residual standard error:  36.2
Multiple R-squared: 0.7333,  A
F-statistic: 10.54 on 12 and 4
Marcel Dettling, Zurich University of Applied Sciences
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rror t value Pr(>|t|)    
e+02   3.960 0.000258 ***
e-01  -2.105 0.040790 *  
e+00  -0.602 0.550207    
e+00   0.635 0.528644    
e-01   2.229 0.030742 *  
e+00  -1.173 0.246981    
e-03   1.255 0.215940    
e+00   5.019 8.25e-06 ***
e+00  -1.523 0.134623    
e-06   0.511 0.611799    
e+01  -0.548 0.586074    
e-03   0.183 0.855617    
e+00   1.259 0.214262    

2 on 46 degrees of freedom
Adjusted R-squared: 0.6637

16

46 DF,  p-value: 1.417e-09
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S Th ht CSome Thoughts on C
a) With collinear predictors, ina) With collinear predictors, in

values from individual para
test) should be “handled w)

b) Drawing conclusions on ca

c) However, the fitted values 
prediction with a model fitt
always fine.

Measuring collinearity: VI
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C lli itCollinearity
nference (i.e. interpreting p-nference (i.e. interpreting p
ameter tests and the global F-

with care”!

ausality should be left out. 

are not affected by this, and also 
ted from collinear predictors is 

1
2

1
1j

j

IF
R

=
−
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M d l Di tiModel Diagnostics
Why do we need to do this?Why do we need to do this?

a) make sure that estimates
[ ] 0E-

-
[ ] 0iE ε =

2( )iVar εε σ=
( ) 0C-

-
( , ) 0i jCov ε ε =

2~ (0, ), . .i N I i i dεε σ

b) improving the model (be
- variable transformations
- further predictors or inter
- weighted regression or m
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s and inference are valid

etter fit, reliable conclusions)

ractions between them
more general model
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What Tools Do We H
• Tukey-Anscombe plotTukey Anscombe plot

• Normal plot

• Scale-Location plot

S i l C l ti l t• Serial Correlation plot

• Cook‘s Distance

• Leverage plot

• Residuals vs. predicto
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Have?
tt

ors
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Outliers and Influenti
N thi S i l

8

Nothing Special

6
4y

2

0 1 2 3 4 5 6

0

x
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ial Data Points
L P i t With t I fl

8

Leverage Point Without Influence

6
4y

2

0 1 2 3 4 5 6

0

x

20
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Outliers and Influenti
L P i t With I fl

8

Leverage Point With Influence

6
4y

2

0 1 2 3 4 5 6

0

x
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ial Data Points
O tli With t I fl

8

Outlier Without Influence

6
4y
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x
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How To Identify Thes
1) Poor man‘s approach1) Poor man s approach

Redo the analysis n times

2) Leverage
If we change  by     , then
Hi h l f d t

iy iyΔ
High leverage for a data po
that it forces the regressio

3) Cook‘s Distance
2 *2

( )ˆ( )j j i ii iy y h rD
−∑

Be careful if Cook‘s Distan

( )
2

( )
( 1) 1 ( 1)

j j i ii i
i

ii

y y
D

p h pεσ
= = ⋅

+ − +
∑
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se Points?

by excluding each data point

n  is the change in 
i t ( )

ii ih yΔ ˆiy
( ) /hoint (                      )  means 

n line to fit well to it.
2( 1) /iih p n> +

nce > 1.
)
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Model Diagnostics: E
Tukey-Anscombe Plot

10
0

Tukey Anscombe Plot

New Orleans

50

al
s

Albany

0R
es

id
ua

-5
0

Lancaster

800 850 900 950 1000 1050

Fitted values
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Example
Normal Plot

4

Normal Plot

New Orleans
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r

-2
-1

S
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Lancaster
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Lancaster
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Model Diagnostics: E
Scale-Location PlotScale Location Plot

New Orleans

1.
5

re
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Example
Serial Correlation Plot

10
0

Serial Correlation Plot

50

(fi
t)

0re
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al
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Index
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Model Diagnostics: E
Cook's DistanceCook s Distance

York
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Example
Leverage Plot
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Leverage Plot
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Model Diagnostics: C
Conclusions from the modeConclusions from the mode

- there are 2 influential data po
- they do not seem to be very
- better to re-run the analysis

Results from that analysis:

l (SO2) i i ifi t i- log(SO2) is significant again
- Residual standard error sma

Coefficient of determination- Coefficient of determination
- Thus: better fit!
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Conclusions
el diagnostics:el diagnostics:

oints: York and New Orleans
strongly influential, but still:
without these and check results

!!!!!!
aller
higherhigher
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Why Are They Influen
Population Density
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00
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ntial?
% White Collar vs. Education
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% White Collar vs. Education
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