Zurich University of Applied Sciences

Applied Statistical Regression HS 2010 – Week 04

Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, October 18, 2010

Zurich University of Applied Science

Course Organization

The exercises will be held on the days that were planned according to the schedule given on the organization sheet!

NEW: the exercise lessons will (until further notice) ALWAYS take place at the computer labs, i.e. in the following rooms:

HG E27	Ag – Go
HG E26.1	Ha – Pa
HG E26.3	Pe – Zh

Multiple Linear Regression

The model is:

$$Y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{p}x_{ip} + \varepsilon_{i}$$

Assumptions:

- $E[\varepsilon_i] = 0$, i.e. the hyper plane is the correct fit
- $Var(\varepsilon_i) = \sigma_{\varepsilon}^2$, constant scatter for the error term
- $Cov(\varepsilon_i, \varepsilon_j) = 0$, uncorrelated errors

An Example

City	Mortality	JanTemp	JulyTemp	RelHum	Rain	Educ	Dens	NonWhite	WhiteCollar	Рор	House	Income	HC	NOx	SO2
Akron, OH	921.87	27	71	59	36	11.4	3243	8.8	42.6	660328	3.34	29560	21	15	59
	007 87	23	72	57	35	11	1281	35	50.7	835880	3 1/	31/58	Q	10	30
Albally, NT	997.07	20	12	. 57			4201	5.5	50.7	000000	5.14	51450	0	10	- 39
Allentown, PA	962.35	29	74	54	44	9.8	4260	0.8	39.4	635481	3.21	31856	6	6	33
Atlanta, GA	982.29	45	79	56	47	11.1	3125	27.1	50.2	2138231	3.41	32452	18	8	24
Baltimore MD	1071 29	35	77	55	43	9.6	6441	24 4	43 7	2199531	3 44	32368	43	38	206
Birmingham, AL	1030.38	45	80	54	53	10.2	3325	38.5	43.1	883946	3.45	27835	30	32	00

Zurich University of Applied Sciences

Applied Statistical Regression HS 2010 – Week 04

Properties of the Estimates

Gauss-Markov-Theorem:

The regression coefficients are unbiased estimates, and they fulfill the optimality condition of minimal variance among all linear, unbiased estimators (*BLUE*).

-
$$E[\hat{\beta}] = \beta$$

-
$$Cov(\beta) = \sigma_{\varepsilon}^2 \cdot (X^T X)^{-1}$$

$$- \hat{\sigma}_{\varepsilon}^{2} = \frac{1}{n - (p+1)} \sum_{i=1}^{n} r_{i}^{2}$$

(note: degrees of freedom!)

If the Errors are Gaussian...

While all of the above statements hold for arbitrary error distribution, we obtain some more, very useful properties by assuming i.i.d. Gaussian errors:

-
$$\hat{\beta} \sim N(\beta, \sigma_{\varepsilon}^2(X^T X)^{-1})$$

-
$$\hat{y} \sim N(X\beta, \sigma_{\varepsilon}^2 H)$$

$$- \hat{\sigma}_{\varepsilon}^{2} \sim \frac{\sigma_{\varepsilon}^{2}}{n-p} \chi_{n-p}$$

What to do if the errors are non-Gaussian?

Individual Parameter Tests

If we are interested whether the jth predictor variable is relevant, we can test the hypothesis

$$H_0:\beta_j=0$$

against the alternative hypothesis

$$H_A:\beta_j\neq 0$$

We can derive the test statistic and its distribution:

$$T = \frac{\hat{\beta}_{j}}{\sqrt{\hat{\sigma}_{\varepsilon}^{2} (X^{T} X)_{jj}^{-1}}} \sim t_{n-(p+1)}$$

Zurich University

Individual Parameter Tests

These tests quantify the effect of the predictor x_j on the response Y after having subtracted the linear effect of all other predictor variables on Y.

Be careful, because of:

- a) The *multiple testing problem*: when doing many tests, the total type II error increases. By how much: see blackboard
- b) It can happen that all individual tests do not reject the null hypothesis, although some predictors have a significant effect on the response. Reason: correlated predictors!

of Applied Scie

Global F-Test

Question: is there any relation between predictors and response?

We test the null hypothesis

$$H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0$$

against the alternative

 $H_A: \beta_j \neq 0$ for at least one j in 1,..., p

The test statistic is:

$$F = \frac{n - (p+1)}{p} \cdot \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}} \sim F_{p,n-(p+1)}$$

Partial F-Tests

Test the effects of p-q predictors simultaneously!

We divide the model into 2 parts

 $Y = X\beta + \varepsilon = X_1\beta_1 + X_2\beta_2 + \varepsilon$

So that we can test the hypotheses

$$H_0: \beta_2 = 0$$
 versus $H_A: \beta_2 \neq 0$

We compute

$$SSR_{H_0} : \sum_{i=1}^{n} (\hat{y}_i - \overline{y}_i)^2 \text{ and } SSR_{H_A} : \sum_{i=1}^{n} (\hat{y}_i^{\%} - \overline{y}_i)^2$$

Partial F-Tests

Test the effects of p-q predictors simultaneously!

The test statistic is

$$F = \frac{n - p - 1}{p - q} \cdot \frac{SSR_{H_A} - SSR_{H_0}}{\sum_{i=1}^{n} (y_i - \hat{y}_i^{\%})^2} \sim F_{p - q, n - p - 1}$$

Where do we need this?

- meteorological variables in the mortality dataset
- later, when we work with factor/dummy variables

Zurich University

Coefficient of Determination

The coefficient of determination, also called *multiple R-squared*, is aimed at describing the goodness-of-fit of the multiple linear regression model:

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} \in [0, 1]$$

It shows the proportion of the total variance which has been explained by the predictors. The extreme cases 0 and 1 mean:...

Zurich University of Applied Science

Adjusted Coefficient of Determination

If we add more and more predictor variables to the model, R-squared will always increase, and never decreases

Is that a realistic goodness-of-fit measure? → NO, we better adjust for the number of predictors!

$$adjR^{2} = 1 - \frac{n-1}{n-(p+1)} \cdot \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} \in [0,1]$$

R-Output

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	773.0197	22.1852	34.844	< 2e-16	* * *
log(SO2)	17.5019	3.5255	4.964	7.03e-06	* * *
NonWhite	3.6493	0.5910	6.175	8.38e-08	* * *
Rain	1.7635	0.4628	3.811	0.000352	* * *

Residual standard error: 38.4 on 55 degrees of freedom Multiple R-squared: 0.641, Adjusted R-squared: 0.6214 F-statistic: 32.73 on 3 and 55 DF, p-value: 2.834e-12

_ _ _

Zurich University

Interpreting the Result

- Does the SO2 concentration affect the mortality?
- \rightarrow Might be, might not be
- \rightarrow There are only 3 predictors
- \rightarrow We could suffer from confounding effects
- \rightarrow Causality is always difficult, but...

The next step is to include all predictor variables that are present in the mortality dataset.

Applied Statistical Regression HS 2010 – Week 04 More Predictors

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	1.164e+03	2.939e+02	3.960	0.000258	* * *
JanTemp	-1.669e+00	7.930e-01	-2.105	0.040790	*
JulyTemp	-1.167e+00	1.939e+00	-0.602	0.550207	
RelHum	7.017e-01	1.105e+00	0.635	0.528644	
Rain	1.224e+00	5.490e-01	2.229	0.030742	*
Educ	-1.108e+01	9.449e+00	-1.173	0.246981	
Dens	5.623e-03	4.482e-03	1.255	0.215940	
NonWhite	5.080e+00	1.012e+00	5.019	8.25e-06	* * *
WhiteCollar	-1.925e+00	1.264e+00	-1.523	0.134623	
Рор	2.071e-06	4.053e-06	0.511	0.611799	
House	-2.216e+01	4.040e+01	-0.548	0.586074	
Income	2.430e-04	1.328e-03	0.183	0.855617	
log(SO2)	6.833e+00	5.426e+00	1.259	0.214262	

Residual standard error: 36.2 on 46 degrees of freedom Multiple R-squared: 0.7333, Adjusted R-squared: 0.6637 F-statistic: 10.54 on 12 and 46 DF, p-value: 1.417e-09

Zurich University

Some Thoughts on Collinearity

- a) With collinear predictors, inference (i.e. interpreting pvalues from individual parameter tests and the global Ftest) should be "handled with care"!
- b) Drawing conclusions on causality should be left out.
- c) However, the fitted values are not affected by this, and also prediction with a model fitted from collinear predictors is always fine.

Measuring collinearity:
$$VIF_j = \frac{1}{1 - R_j^2}$$

Model Diagnostics

Why do we need to do this?

- a) make sure that estimates and inference are valid
 - $E[\varepsilon_i] = 0$
 - $Var(\varepsilon_i) = \sigma_{\varepsilon}^2$
 - $Cov(\varepsilon_i, \varepsilon_j) = 0$
 - $\varepsilon_i \sim N(0, \sigma_{\varepsilon}^2 I)$, *i.i.d*

b) improving the model (better fit, reliable conclusions)

- variable transformations
- further predictors or interactions between them
- weighted regression or more general model

What Tools Do We Have?

- Tukey-Anscombe plot
- Normal plot
- Scale-Location plot
- Serial Correlation plot
- Cook's Distance
- Leverage plot
- Residuals vs. predictors

Zurich University

Outliers and Influential Data Points

Zurich University

Outliers and Influential Data Points

How To Identify These Points?

1) Poor man's approach

Redo the analysis n times by excluding each data point

2) Leverage

If we change y_i by Δy_i , then $h_{ii}\Delta y_i$ is the change in \hat{y}_i High leverage for a data point ($h_{ii} > 2(p+1)/n$) means that it forces the regression line to fit well to it.

3) Cook's Distance

$$D_{i} = \frac{\sum (\hat{y}_{j} - y_{j(i)})^{2}}{(p+1)\sigma_{\varepsilon}^{2}} = \frac{h_{ii}}{1 - h_{ii}} \cdot \frac{r_{i}^{*2}}{(p+1)}$$

Be careful if Cook's Distance > 1

Zurich University

Model Diagnostics: Example

Tukey-Anscombe Plot

Normal Plot

Model Diagnostics: Example

Scale-Location Plot

Serial Correlation Plot

Model Diagnostics: Example

Cook's Distance

Leverage Plot

Zurich University

Model Diagnostics: Conclusions

Conclusions from the model diagnostics:

- there are 2 influential data points: York and New Orleans
- they do not seem to be very strongly influential, but still:
- better to re-run the analysis without these and check results

Results from that analysis:

- log(SO2) is significant again!!!
- Residual standard error smaller
- Coefficient of determination higher
- Thus: better fit!

zh

Zurich University of Applied Sciences

Why Are They Influential?

