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1 Introduction 
In science, but also in everyday life one often asks the question how a target 
(value) of special interest depends on several other factors or causes. Examples 
are numerous, e.g.: 

• how fertilizer and soil quality affects the growth of plants 

• how size, location, furnishment and age affect apartment rents 

• how take-off-weight, distance and weather affect airplane fuel consumption 

In all quantitative settings, regression techniques can provide an answer to these 
questions. They describe the relation between some explanatory or predictor 
variables and a variable of special interest, called the response or target variable. 
Regression techniques are of high practical importance, and probably the most 
widely used statistical methodology. 

1.1 The Linear Model 

One of mathematically simplest and most appealing ways to describe the relation 
between target and predictor variables is to use a linear function, which is 
specified up to some unknown parameters and a random error component. We will 
see later, that even under the restriction of linear functions, we obtain a very 
versatile modeling tool. When we write the target variable as Y , and the predictor 
variables as 1,..., px x , the linear regression model is as follows: 

 0 1 1 2 2 ... p pY x x xβ β β β ε= + + + + + . 

Here, 0 1, ,..., pβ β β  are unknown parameters, and ε  is the random error term. The 
goal now is to estimate the unknown parameters, such that the error term is 
minimized according to some criterion. Mostly, the criterion will be the sum of 
squared residuals. 

In order to perform estimation, we need data, i.e. the predictor and the target value 
need to be observed on a sufficient number of instances. We assume that we are 
given n  such observations numbered from 1,...,n , introduce an additional index i  
to account for this and write the regression function as follows: 

 0 1 1 2 2 ...i i i p ip iY x x xβ β β β ε= + + + + + . 

In the standard framework, one also assumes that the error terms iε  are 
independent and identically distributed, have expectation zero and finite variance. 
We will get back to these assumptions. 

1.2 Goals with Linear Modeling 

There are a variety of reasons to perform regression analysis. The two most 
prominent ones are: 
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• Gaining some understanding on the causal relation, i.e. doing inference 

In the “growth of plants” example from above, one might be interested in the 
question whether there is a benefit in growth, caused by the fertilizer, 
potentially regarding the influence of several co-variables. We will see that 
regression analysis offers tools to answer the question whether the fertilizer 
influence is beneficial in statistically significant way. Drawing conclusions on 
true causal relationship, however, is a somewhat different matter. 

• Target value prediction as a function of new explanatory variables 

In the “fuel consumption” example from above, an airplane crew or the 
ground staff may want to determine the amount of fuel that is necessary for 
a particular flight, given its parameters. Regression analysis incorporates 
the previous experience in that matter and yields a quantitative prediction. It 
also results in prediction intervals which give a hint on the uncertainty such 
a prediction has. In practice, the latter might be very useful for the amount 
of reserve fuel that needs to be loaded. 

1.3 The Versatility of Linear Modeling 

At a first glance, it might seem very restrictive to use linear models only. However, 
the function only needs to be linear in the parameters, but we are free to transform 
the predictor variables as we wish. As we can see in the example and text below, 
linear regression modeling is an extremely versatile tool that is sufficient for a wide 
range of data analysis problems. 

This example shows the shock measured after a detonation when a road tunnel 
was built in an urban area, depending on the distance and on the amount of 
explosive material that was used. We see that the relation is far from what is a 
straight line, i.e. what is commonly perceived as a “linear function”. Yet in this 
example, the relation was estimated with a linear regression model.  
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We will get back to this example later and now focus on a summary of the content 
of the remaining chapters of this scriptum, in order to show the versatility of 
(generalized) linear regression modeling altogether. 

Simple Linear Regression 

In simple linear regression, we are after the relation between two continuous 
variables Y  and x . Below is an example, where the target variable Y  is the vital 
capacity of the lung of workers in industry who are exposed to cadmium polluted 
air, depending on their age, which is variable x .  

 

The task here is to fit a straight line into this scatter plot, i.e. a function 
0 1Y xβ β= + , where 0β  is the intercept, and 1β  is the slope. We will also discuss 

parameter estimation, inference, confidence and prediction intervals, residual 
analysis, variable transformations and erroneous input variables. 

Multiple Linear Regression 

This is an extension of the simple linear regression model in the sense that there 
is still one continuous target, but more than one (continuous) predictor variable. In 
the case of two explanatory variables, we are in a 3d-space and fit a plane. With 
more than two predictors, it is a hyper plane in a higher dimensional space that 
cannot be visualized anymore. 

The topics which are discussed are similar to simple linear regression: estimation, 
inference, prediction and model diagnostics. However, a variety of new aspects 
come into play here, and we also discuss topics such as weighted regression and 
some thoughts on robustness. 
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Extending the Linear Model 

The restriction to continuous predictor variables above was somewhat artificial. 
Using transformed input, binary or categorical variables is well within the envelope 
of multiple linear regression analysis. This chapter deals with some special 
aspects about these variable types. 

Model Choice 

In practice, it is often the case that there are a lot of potential explanatory 
variables. The regression setting can be used to determine which are the most 
influential on the response variable. We will get to know techniques for identifying 
the most relevant predictors, and how to skip others. Finally, we leave the area of 
multiple linear regression modeling here and conclude with some general remarks 
on modeling strategies. 

Generalized Linear Models 

As soon as the target variable is no longer continuous (e.g. binary or categorical 
data, count data, etc.), the above regression framework does no longer fit. 
However, it can be extended. In this introductory chapter on generalized linear 
modeling we explain what the benefits of this extension are, and also give a (not 
very technical) sketch of why and how the extension works. 

Binary Logistic Regression 

This is somewhat the simplest case of a generalized linear model: the response 
variable is binary, i.e. “yes/no”, “survived/died”, “success/no success”, etc. Such 
situations are often met in practice. We show how models are fit, how goodness-
of-fit can be measured here and also talk about model diagnostics, all of which are 
quite different of what we saw before. 

Ordinal and Nominal Response 

In spirit, this is similar to the binary case above, but now, the response variable 
has more than just two levels. It can be unordered (the nominal case, e.g. which 
party somebody votes for, “SP”, “CVP”, “FDP”, “SVP”, “Others”) or ordered (the 
ordinal case, i.e. if a patient is affected by side effects “weakly”, “normally”, 
“strongly”). Again, we talk about estimation, fitting and interpretation. 

Poisson Regression for Count Data 

Here, the response variable is a number, and the explanatory variables can be 
either continuous or categorical. Examples include situations where one tries to 
model “the number of incidents” on factors such as weekday, season, weather, 
etc. There is also a close relation to modeling the content of contingency tables 
which will be discussed. 
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Modern Regression Techniques 

The (generalized) linear model is very flexible and useful. However, there are 
“regression type” situations where one reaches its boundaries. High-dimensional 
problems where one has more predictor variables than examples are such a case, 
or also situations with inherent strong non-linearity. Here, we give a sketch on 
some alternative approaches such as recursive partitioning with classification and 
regression trees, random forest and boosting. 

Synopsis 

Finally, after naming a quite large number of techniques and situations, we will try 
to boil it down again to a few characteristics questions that are at the roots of 
every data analysis and regression. They include: 

• Is a regression analysis the right way to go with my data? 

• How do we estimate parameters and their confidence intervals? 

• What assumptions are behind the fitted models, and are they met? 

• Does my model fit? What can I improve it if that’s not the case? 

• How can identify the “best” model, and how to choose it? 
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2 Simple Linear Regression 

2.1 Introduction Example 

In India, it was observed that alkaline soil (i.e. soil with high pH-value) hampers 
plant growth. This gave rise to a search for tree species which show high tolerance 
against these conditions. An outdoor trial was performed, where 123 trees of a 
particular species were planted on a big field with considerable soil pH-value 
variation. After 3 years of growth, every trees height iY  was measured. 
Additionally, the pH-value of the soil in the vicinity of each tree was known and 
recorded as variable ix . The best way to display the data is a scatter plot. 
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What could be the goal of an analysis? Well, all is targeted towards understanding 
the relation between pH-value and tree height. Thus, in the first place we would 
want to know how the tree height typically changes, when the pH-value increases 
by 1 unit. Moreover, it would be interesting to know whether there is a statistically 
significant relation between the two variables. Also of interest is the expected tree 
height, including a confidence interval, given the soil condition. 

2.2 The Simple Linear Regression Model 

The relation between an explanatory variable x  and the response variable Y  is, 
given a set of n  observation, written as: 

0 1i i iY xβ β ε= + + , for all 1,...,i n= . 

The meaning of the quantities above is as follows: 
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iY  is the response or target variable of the i th observation. In our 
example, this is the height of the i th tree. Note that the response is a 
random variable. 

ix  is the explanatory or predictor variable, measured on the i th 
observation. In our example, it is the pH-value of the soil the tree 
grew on. The predictor is treated as a fixed, deterministic variable. 

0 1,β β  are unknown parameters, and are called regression coefficients. 
These are to be estimated by using the data points which are 
available. 0β  is called intercept, whereas 1β  is the slope. The latter 
indicates by how much the response changes, if the x -value is 
increased by 1 unit. 

iε  is the random error term or residual. It is a random variable, or more 
precisely, the random difference between the observed value iy  
(which is the realization of a random variable) and the model value 
fitted by the regression. 

Assumptions for this model 

We always require zero expectation for the error term, i.e.  

[ ] 0iE ε = . 

This means that the relation between predictor and response is a linear function, 
or in our example: a straight line is the correct fit. Furthermore, we require 
constant variance of the error term, i.e.  

2( )iVar εε σ= . 

Finally, there must not be any correlation among the errors for different instances, 
which boils down to the fact that the observations do not influence each other, and 
that there are no hidden factors (e.g. time) that do so. In particular, 

( , ) 0i jCov ε ε = for all i j≠ .  

Also note that for now, there is no distributional assumption (e.g. Gaussian 
distribution) for the residuals. This model is called simple (or univariate) linear 
regression, since there is only one predictor.  

However, it is important to perceive that we here talk about linear modeling not 
because we fit a straight line, but because the model equation is linear in the two 
parameters 0β  and 1β . Thus for example, also  

2
0 1i i iY xβ β ε= + +   

is a linear regression model, because it is linear in the parameters, even though a 
parabola is fitted to the data points. On the other hand,  

2
0 1i i iY xββ β ε= + +   
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is not a linear regression problem anymore, because it is not linear in the 
parameters. 

2.3 Parameter Estimation 

Parameter estimation means asking the question which line best fits through the n  
data pairs ( , )i ix y . For each data point, we consider the vertical difference to the 
regression line, i.e. the residual 

 0 1( )i i ir y xβ β= − +  

The regression line, and thus the parameters will be such that that the sum of 
squared residuals is minimal. This is known as the least squares approach. 

The minimization problem can either be tackled by setting the partial derivatives to 
zero and solving for the parameters, or also by a geometrically motivated 
projection idea. Note that in both cases there is a very strong analogy to what is 
known as least squares adjustments in linear algebra. Also here, we need to solve 
the so-called normal equations to find the solution: 

 ( )T TX X X yβ = . 

As long as the matrix X  has full rank, which is the case for any “reasonable setup” 
with a non-singular design (in simple linear regression this is: we have at least two 
data points with different values for ix ), the least squares estimator is unique and 
can be written explicitly as 

1
1 2

1

( )( )ˆ
( )

n
i ii

n
ii

x x y y

x x
β =

=

− −
=

−
∑
∑

 and 0 1
ˆ ˆy xβ β= − . 

Using these estimated parameters, we obtain the regression line, defined as  

 0 1
ˆ ˆˆi iy xβ β= +  for all 1,...,i n= . 

It can be visualized within the scatter plot, see the figure below. Here, ˆiy  is the 
model value for the response of observation i , and is called fitted or predicted 
value. Please note again, that the residuals are the difference between fitted and 
observed values. 

You may find it somewhat arbitrary that we chose the sum of squares residuals as 
the criterion to minimize. The reasons are mainly two-fold. First, this criterion 
results in a solution that can be written explicitly, and does not require 
sophisticated numerical optimization, which was important in a historical context. 
Moreover, we will see below that there is some mathematical justification 
(“optimality”) for the use of least squares, especially if the errors have Gaussian 
distribution. 
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However, sometimes one also relies e.g. on minimizing the sum of absolute 
residuals, which is also known as 1L -regression. While it requires numerical 
optimization, the resulting procedure is more robust against outlying observations.  
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We turn our attention back to the least squares method and study some properties 
of the estimates. This also serves as further legitimating for minimizing the sum of 
squared residuals.  

Gauss Markov Theorem 

Under the model assumptions from section 2.1 (zero expected value and constant 
variance for the residuals, uncorrelated errors), the estimates 0 1

ˆ ˆ,β β  are unbiased 
(i.e. 0 0

ˆ[ ]E β β=  and 1 1
ˆ[ ]E β β= ). Moreover, they have minimal variance among all 

unbiased, linear estimators, meaning that they are most precise. It can be shown 
that: 

 2
0 2

1

1ˆ( )
( )n

ii

xVar
n x x

εβ σ
=

⎛ ⎞
⎜ ⎟= ⋅ +
⎜ ⎟−⎝ ⎠∑

, and 

 
2

1 2
1

ˆ( )
( )n

ii

Var
x x
εσβ

=

=
−∑

. 

These results also show how a good experimental design can help to improve the 
quality of the estimates, or in other words, how we can obtain a more precisely 
determined regression line: 



 11 

- we can rise the number of observations n . 

- we have to make sure that the predictors x  scatter well. 

- by using a well-chosen predictor, we can keep 2
εσ  small. 

- for 0β̂  it helps, if the average predictor value x  is close to zero. 

 

Estimation of 2
εσ  

Besides the regression coefficients, we also need to estimate the variance of the 
residuals. We require it for doing inference on the estimated parameters. The 
estimate is based on the residual sum of squares (abbreviation: RSS), in 
particular: 

 2 2

1

1ˆ ˆ( )
2

n

i i
i

y y
nεσ

=

= ⋅ −
− ∑  

2.4 Inference on the Parameters 

So far, we did not make any distributional assumptions. Let us remark again that 
we do not need them for proving the Gauss Markov Theorem, which holds 
independent of the error distribution. However now, we want to do inference on the 
estimated parameters, i.e. check if the predictor variable x  has significant 
influence on the response Y . This is only possible by making a distributional 
assumption, hence we assert: 

 2~ (0, )i N εε σ , i.i.d.. 

A word of caution: please note that if one wants to rely on tests and confidence 
intervals for the parameters, the above assumptions (Gaussian distribution and 
independence) need to be met, and thus checked by using the methods that will 
be discussed in section 2.6 on residual diagnostics. If they are violated, one often 
draws false conclusions. 

For finding out whether the predictor x  has a statistically significant influence on 
the response variable Y , one tests the null hypothesis 0 1: 0H β =  against the 
alternative hypothesis 1: 0AH β ≠ . As a test statistics, we use 

 1 1 1

2 2
1 1

ˆ ˆ ˆ[ ] 0
ˆ( ) ˆ ( )n

ii

ET
Var x xε

β β β

β σ
=

− −
= =

−∑
. 

It has a Student distribution with 2n −  degrees of freedom, which can be used to 
determine acceptance and rejection regions, as well as the p-value. If one comes 
to the conclusion that the null hypothesis needs to be rejected, we have a 
statistically significant relation between predictor and response, i.e. the slope of 
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the regression line is significantly different from zero. For inferring the intercept, 
the procedure is analogous.  

Output of Statistical Software Packages 

When performing simple linear regression, one often relies on statistical software. 
The output looks similar, no matter what suite is used. We here show the output 
that is produced by R. It provides the points estimates for 0 1,β β  (column 
“Estimate”), as well as their standard deviations (column „Std. Error“), the value of 
the test statistic T  (column „t value“), and the p-value for the respective null 
hypotheses (column „Pr(>|t|)“). 

> summary(fit) 
Call: 
lm(formula = height ~ ph, data = dat) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-3.70195 -0.54712  0.08745  0.66626  2.00330 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  28.7227     2.2395   12.82   <2e-16 *** 
ph           -3.0034     0.2844  -10.56   <2e-16 *** 
--- 
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 1.008 on 121 degrees of freedom 
Multiple R-squared: 0.4797, Adjusted R-squared: 0.4754 
F-statistic: 111.5 on 1 and 121 DF,  p-value: < 2.2e-16 

Moreover, also the point estimate for 2
εσ  is given („Residual standard error“) with 

corresponding degrees of freedom 2n −  („degrees of freedom“), from which one 
directly concludes on the number of observations that were present. Finally, 
Multiple R-squared is defined as 

 

2

2 1

2

1

ˆ( )
[0,1]

( )

n

i
i
n

i
i

y y
R

y y

=

=

−
= ∈

−

∑

∑
 

and shows the proportion of the total variance which has been explained by the 
predictor. In case of simple linear regression, the last line with the F-statistic does 
not provide any further value. Its meaning will be discussed in the context of 
multiple linear regression, see section 5. 
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2.5 Prediction, Confidence and Prediction Intervals 

The estimated parameters, i.e. the regression line can now be used for predicting 
the target value at an arbitrary (new) value *x . We simply do as follows: 

 * *
0 1

ˆ ˆŷ xβ β= +  

It is important to note that usually only a prediction within the range of x -values 
that were present for fitting is sensible. This is called interpolation. On the other 
hand, extrapolation, i.e. a prediction beyond the boundaries of the x -values that 
were present when fitting, has to be treated with great care. 

Example: For a pH-value of 8.0, we expect a tree height of 
28.7227 ( 3.0034 8.0) 4.4955+ − ⋅ =  units. However, it wouldn’t be a good idea to use 
the regression line for predicting the tree height on soil with a pH-value of 5.0. It is 
very questionable that the relation we found on our data also holds for such acid 
ground. 
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We can now determine a 95% confidence interval for the predicted value *ŷ . It is 
as follows: 

 
* 2

*
0 1 0.975; 2 2

1

1 ( )ˆ ˆ ˆ
( )

n n
ii

x xx t
n x x

εβ β σ−

=

−
+ ± ⋅ ⋅ +

−∑
 

This confidence interval can be computed for arbitrary *x , and can be displayed in 
the scatter plot (see above, in blue) as a confidence region for  the fitted 
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regression line. This region is larger towards the boundaries of the present x -
values, as it is easy to comprehend from the formula. 

It is very important to note that the above confidence region does not tell us, to 
which height an additional tree place somewhere might grow. The reason is that 
(also within the training data), the true values scatter around their expected value. 
We can, however, derive a 95% prediction interval for *y : 

 
* 2

*
0 1 0.975; 2 2

1

1 ( )ˆ ˆ ˆ 1
( )

n n
ii

x xx t
n x x

εβ β σ−

=

−
+ ± ⋅ ⋅ + +

−∑
. 

Again, we can compute this interval for arbitrary *x  and display it in the scatter plot 
(see above, in green). It is clearly wider than the confidence region for the 
regression line. 

2.6 Residual Diagnostics 

After every regression fit, in order to avoid drawing any false conclusions, we need 
to check the model assumption stated under section 2.2, plus potentially the 
normality assumption. In summary, we have to check for: 

- at least an approximately linear relation between x  and Y , i.e. the 
expected value of the errors iε  is zero over the entire x -range. 

- the errors iε  show constant variation 2
εσ  and are (serially) uncorrelated. 

- if tests and/or confidence/prediction intervals are computed, the errors 
iε  also need to be normally distributed. 

These checks are usually done by plotting the residuals ir  against various other 
variables. We here present the two most important plots, and refer to section 6 for 
further details on model diagnostics.  

Normal Plot 

The assumption of normally distributed errors can be checked with the normal plot, 
i.e. we plot the ordered residuals against the corresponding quantiles of the 
Gaussian distribution. If the errors iε  are normally distributed, then this also holds 
for the residuals ir . Thus, the normal plot should (nearly) be a straight line. 

Example: The normal plot of the tree growth problem (see plot below) shows a 
few negative residuals which are bigger than normally distributed errors would 
suggest. However, in real life things “never look perfect”. In this example, we 
would judge the normality assumption to be “reasonably fulfilled”, and would thus 
trust in test results and confidence intervals.  

In cases where the distribution of residuals is skewed to the right, the situation 
may be improved by a square-root or log-transformation of the response variable. 
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If there are just a few large residuals (outliers), then we recommend checking 
whether these are caused by typing errors or other, unwanted influences. If that is 
the case, then the corresponding data points are either corrected, or omitted. For 
some further strategies in dealing with systematic deviations from the normality 
assumption, we refer to the later chapters of this scriptum. 
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Tukey-Anscombe-Plot 

With this popular plot, violations of the zero expected value and constant variance 
conditions can be unveiled at a glance. On the x -axis, one plots the fitted values, 
whereas the y -axis shows the residuals. The optimal case is when all residuals 
fall within a horizontal layer of constant width, and show random scatter. On the 
other hand, any non-random structure that is visible should be treated as 
suspicious for a model violation. 

Example: The Tukey-Anscombe-Plot (see below) in the tree growth example 
shows no gross violations of the model assumptions. An outlier with negative 
residual value is apparent, though. It is advisable to check this instance for typos 
or other irregularities. If nothing is found, there is no reason to be overly worried 
here, and the data point can be kept in the model. 

In cases of non-constant variance, a transformation (usually of the response 
variable) may help to improve the situation. An alternative can be to use weighted 
regression, see section 6.6. If the Tukey-Anscombe-Plot shows a non-linear 
relation between predictor and response, it may be that a transformation clears the 
problem, or additional predictors need to be incorporated into the model. 

2.7 Erroneous Input Variables 

There are cases where the predictor variable is not deterministic, but like the 
response, subject to random error, too. We then write 

 i i iY η ε= + , for all 1,...i n= , with [ ] 0iE ε =  and 2( )iVar εε σ= , 

 i i iX ξ δ= + , for all 1,...i n= , with [ ] 0iE δ =  and 2( )iVar δδ σ= . 

We then have a linear relation 0 1i iη β β ξ= + , but iη  and iξ  cannot be observed. 
Such variables are called latent variables, and only iX  and iY  can be observed. 
We can shift the terms around and obtain: 

 0 1 1i i i iY Xβ β ε β δ= + + −  

If we estimate the slope with the usual least squares estimator in this case, then 
we generally will not obtain an unbiased estimate for 1β . Under some mild 
conditions (not shown here), we have: 

 
( )1 1 2 2

1ˆ[ ]
1

E
δ ξ

β β
σ σ

= ⋅
+

, where 2 1 ( )inξσ ξ ξ= ⋅ −∑  

From the above formula we conjecture, that the estimate for 1β  is unbiased only if 
2 0δσ = . However, if 2

δσ  is small when compared to 2
ξσ , i.e. if the errors in 

observing the X ’s is small compared to the scatter of the X -values, then the bias 
can be neglected and we would still use the least squares approach. In all other 
cases, we refer to the work of Draper (1992, Straight line regression when both 
variables are subject to error). 
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However, if the goal in regression analysis is not inference but “only” prediction, 
then errors in the explanatory variables might be ignored altogether. The reason 
for this is that the predicted values are unbiased, as long as the error structure on 
the input variables does not change. 
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3 Multiple Linear Regression 

3.1 Introduction and Example 

Often, the response variable is, or may be, influenced by various predictors at a 
time. In our previous tree growth example, such multiple predictors could 
potentially be other properties of the soil besides the pH-value, the amount of 
water that the tree was drained with, etc. 

What to do with such cases, where multiple predictor variables are available? The 
poor man’s approach would be to do many simple linear regressions on each of 
the predictors separately. This has the somewhat doubtful advantage that the 
relation between each predictor and the response can be displayed by a 2d-
scatter plot. However, and this is really important, doing many simple regressions 
is clearly not advisable, the reason is explained just below. 

The appropriate tool to include the effects of more than one predictor on a 
response variable is multiple linear regression. Geometrically spoken, it fits the 
least-squares hyper plane in the ( 1)p + -dimensional space, where p is the number 
of predictors that are present. Generally, this fit cannot be visualized when 2p > .  

It is important to note that doing many simple regressions is not equivalent to a 
multiple regression. The results will generally be different, i.e. they are only 
identical, if the predictor variables are orthogonal – and this is almost never the 
case with data from observational studies. 

Example 

The chapter on multiple linear regression will be illustrated with the mortality 
dataset. Researchers at General Motors collected data on 59 US Standard 
Metropolitan Statistical Areas in a study of whether air pollution contributes to 
mortality. The data include predictors measuring demographic characteristics of 
the cities, predictors measuring climate characteristics, and finally predictors 
recording the concentration of three different air pollutants in the ambient air: 
hydrocarbons ( )HC , nitrous oxide ( )xNO , and sulfur dioxide 2( )SO . 

3.2 The Multiple Linear Regression Model 

The multiple linear regression model specifies the relation between the response 
variable Y  and the predictor variables 1,..., px x . We assume that we are given 
n instances, where response and predictors were observed. We then write the 
model as: 

 0 1 1 2 2 ...i i i p ip iY x x xβ β β β ε= + + + + + , for all 1,...,i n= . 

As we had explained before, 1,..., pβ β  are the unknown regression parameters. It 
will be our goal to estimate these from the data. Again, iε  is the error term, on 
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which we make same assumptions as in simple linear regression. However, we 
restate them here: 

[ ] 0iE ε = . 

Again this means that the relation between predictors and response is a linear 
function, or in other words: the hyper plane is the correct fit. Furthermore, we 
require constant variance of the error term, i.e.  

2( )iVar εε σ= . 

Finally, there must not be any correlation among the errors for different instances, 
which boils down to the fact that the observations do not influence each other, and 
that there are no hidden factors (e.g. time) that do so. In particular, 

( , ) 0i jCov ε ε = for all i j≠ .  

As in simple linear regression, we do not require any specific distribution for 
parameter estimation and certain optimality results of the least squares approach. 
The distributional assumption only comes into play when we do inference on the 
parameters. 

Example 

We turn back our attention to the mortality dataset. While there are more predictor 
variables, we first focus on only three of them, plus the response. As stated above, 
the data from 59 cities are available: 

 iY  Mortality rate, i.e. number of deaths per 100’000 people, in city i . 

 1ix  Average 2SO  concentration in city i . 

 2ix  Percentage of non-white population in city i . 

 3ix  Average yearly precipitation in inches, in city i . 

The plot below shows scatter plots of the response versus each of the predictors, 
together with the fit from a simple linear regression. Since the 2SO -values show a 
skewed distribution, and because the relation to the mortality rate does not seem 
very linear, we apply a log-transform on them. This improves the situation. The 
equations for the simple linear regressions are as follows: 

2log( )SO : 2ˆ 886.34 16.86 log( )y SO= + ⋅  

 NonWhite : ˆ 887.90 4.49y NonWhite= + ⋅  

 Rain :  ˆ 851.22 2.34y Rain= + ⋅  
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However, as we have learned, we must fit a multiple linear regression in this case, 
where 3 predictor variables are available. The R code for doing so is as follows: 

> lm(Mortality ~ log(SO2) + NonWhite + Rain, data=mortality) 

Coefficients: 

(Intercept)     log(SO2)     NonWhite         Rain   
    773.020       17.502        3.649        1.763   

We observe that as in simple linear regression, the function lm() does the job. 
The response variable is written first on the left hand side, and after the tilde, we 
list the predictors, which are separated by a ‘+’. Finally, we have to specify the 
data frame where the variables are taken from. We obtain the coefficient 
estimates, and thus, the regression equation: 

2ˆ 773.020 17.502 log( ) 3.649 1.763y SO NonWhite Rain= + ⋅ + ⋅ + ⋅  
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As blatantly claimed in the introduction, the parameters ˆ
jβ  from the simple 

regressions are not equal to the ones from multiple regression. The differences 
are not even that prominent here, but note that they can be arbitrarily big. We now 
turn our attention to the question what the meaning of the coefficients is in the 
case of multiple linear regression? 

The regression coefficient ˆ
jβ  is the increase in the response Y , if the 

predictor jx  increases by 1 unit, but all other predictors remain unchanged.  

3.3 Matrix Notation 

Multiple linear regression is much easier to comprehend when the matrix notation 
is used. We can write the model very simply as  

 Y X β ε= + . 

The elements in this equation are as follows: 

Y  is a ( 1)n×  column vector that holds the responses for all n  cases. 

X  is the design matrix with dimension ( ( 1))n p× + . Each column of X  
holds a predictor variable, with all its observations on the n  cases. 
The first column is special. It consists of 1 only, and it is there such 
that we have an intercept in the model 

β  is a (( 1) 1)p + ×  column vector that holds the regression coefficients. 
Note that these are unknown, and it is the goal to estimate these 
from the data we have observed. 

ε  is a ( 1)n×  column vector with the errors. Also the errors are 
unobservable, they will be estimated by the residuals, i.e. the 
difference between the observed and fitted values. For the error 
terms, we assume that [ ] 0E ε =  and 2( )Cov Iε σ= . 
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4 Estimation with Multiple Linear Regression Models 

While we did already fit a multiple regression model to the mortality data in the 
example above, we did not specify how to do this yet. This will be the content of 
this section. We will also discuss the properties of the estimates, and some 
problems that can arise during the estimation process. 

4.1 Least Squares Approach and Normal Equations 

As in simple linear regression, we will again estimate the regression coefficients by 
the least squares approach. Thus, we have to determine the residuals 

0 1 1( ... )i i i p ipr y x xβ β β= − + + + . 

Then, we choose the parameters 0 ,..., pβ β  such that the sum of squared residuals 

 2
1

n
ii
r

=∑   

is minimal. This problem can be tackled by taking partial derivatives and setting 
them to zero. This again results in the so-called normal equations. We do now 
take full advantage of the matrix notation that was introduced above in section 3.3 
and can thus write them as 

 ( )T TX X X yβ = . 

If TX X  is regular, we can obtain the least squares estimates of the regression 
coefficients by some simple matrix calculus as 

 1ˆ ( )T TX X X yβ −= ⋅ . 

As long as the regularity condition for TX X  is fulfilled, there is a unique and 
explicit solution for the regression coefficients β̂ , and thus no numerical 
optimization is needed. A side remark: in software packages, the inverse of TX X  
is usually not computed for numerical reasons, but the computations will be based 
on a QR - or similar decompositions of TX X . 

4.2 Identifiability 

We claimed above that the normal equations have a unique solution if and only if 
TX X  is regular and thus invertible. This is the case if X  has full rank, i.e. all 

columns of that matrix, or in other words, all predictor variables are linearly 
independent. This is the standard case, and whenever the full rank condition for 
X  is fulfilled, we are fine. 

On the other hand, there will also be cases where X  does not have full rank and 
TX X  is singular. Then, there usually are infinitely many solutions. Is this a 

problem? And how does it occur? The answer to the first question is “yes”. When 
the design matrix X  does not have full rank, the model is “badly formulated”, such 
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that the regression coefficients β  are at least partially unidentifiable. It is 
mandatory to improve the design, in order to obtain a unique solution, and 
regression coefficients with a clear meaning. How can it happen? 

1) Duplicated variables 

It could be that we use a person’s height both in meters and centimeters as 
a predictor. This information is redundant, and the two variables are linearly 
dependent. One thus has to remove one of the two. 

2) Circular variables 

Another example is when the number of years of pre-university education, 
the number of years of university education and also the total number of 
years of education are recorded and included in the model. These 
predictors will be linearly dependent, thus X  does not have full rank. 

3) More predictors than cases 

Note that a necessary (but not sufficient) condition for the regularity of TX X  
is p n< . Thus, we need more observations than we have predictors! This 
makes sense, because the regression is over-parameterized (or super-
saturated) else and will not have a (unique) solution. 

What does R do in non-identifiable problems? 

Generally, statistics packages handle non-identifiability differently. Some may 
return error messages; some may even fit models because rounding errors kill the 
exact linear dependence. R handles this a bit different: it recognizes unidentifiable 
models and fits the largest identifiable one by removing the excess predictors in 
reverse order of appearance in the model formula. The removed predictors will still 
appear in the summary, but all their values are NA, and a message also says 
“Coefficients: k not defined because of singularities”). While 
this still results in a fit, it is generally better in such cases to rethink the formulation 
of the regression problem, and remove the non-needed predictors manually. 

4.3 Properties of the Least Squares Estimates 

What are the properties of the least squares estimates, in cases where there is a 
unique solution? Well, the Gauss-Markov-Theorem from simple linear regression 
(see section 2.3) also holds here, under the general conditions stated at the 
beginning of section 3.2. It tells us that the regression coefficients are unbiased 
estimates, and they fulfill the optimality condition of minimal variance among all 
linear, unbiased estimators. In particular, we have: 

 ˆ[ ]E β β=  and 2 1( ) ( )TCov X Xεβ σ −= ⋅ ,  

As in simple linear regression, the precision of the regression coefficients depends 
on the design and the number of observations.  
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4.4 Estimating the Error Variance 2
εσ  

An unbiased estimate for the unknown error variance 2
εσ  can be obtained by 

standardizing the sum of squared residuals with the appropriate degrees of 
freedom, which is the number of observations n minus the number of estimated 
parameters. With p  predictors variables and an intercept, this number of 
estimated parameters is 1p + , and the error variance estimate is: 

 2 2

1

1ˆ
( 1)

n

i
i

r
n pεσ

=

=
− + ∑ . 

4.5 The Hat Matrix H  

We will now take further advantage of the matrix notation and the estimated 
regression coefficient. They allow us to write the fitted values ŷ  very simply: 

 ˆŷ X β=  

We now do some further calculus and plug-in the solution for β̂  from above. We 
then observe that the fitted values ŷ  are obtained by multiplying the hat matrix H , 
with the observed response valuesY : 

 1ˆˆ ( )T Ty X X X X X Y HYβ −= = =  

The matrix H  is called hat matrix, because “it puts a hat on theY ’s”, i.e. 
transforms the observed values into fitted values. We can also use this matrix for 
computing the residuals: 

 ˆ ( )r Y Y I H Y= − = −  

If we compute expected value and variance in the two formulas above, then, 
regarding the fact that the predictors X  are fixed, non-random values, we obtain: 

ˆ[ ]E y y=  and [ ] 0E r = , respectively 

2ˆ( )Var y Hεσ=  and 2( ) ( )Var r I Hεσ= − . 

This shows to us that the residuals ir , which are estimates of the unobservable 
errors iε , have zero expectation, but usually do not have equal variance. 
Moreover, they are usually correlated. Note that this is fundamentally different 
from the assumption we imposed on the errors, where we required equal variance 
and no correlation. 

4.6 Additional Properties under Gaussian Distribution 

While all of the above statements hold for arbitrary error distribution, we obtain 
some more, very useful properties by assuming i.i.d. Gaussian errors. Then, and 
only then, the estimators for the regression coefficients will have a Normal 
distribution: 
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 ( )2 1ˆ ~ , ( )TN X Xεβ β σ −  

When doing inference, i.e. performing hypothesis tests and computing confidence 
intervals, one routinely assumes Gaussian errors (as we also did for inference in 
simple linear regression) and makes use of the above result. Under Gaussian 
errors, also the distribution of the fitted values and the error variance estimate is 
known: 

 2ˆ ~ ( , )y N X Hεβ σ  

 
2

2ˆ ~ n pn p
ε

ε
σσ χ −−

 

In practice, the normality assumption of the errors iε  needs to be carefully 
checked. We refer to section 6 for how to do this. But what to do if the assumption 
is not (well) fulfilled? For very large number of observations n , we can rely on the 
central limit theorem, which tells us that the result of normally distributed 
parameters will still approximately hold for large sample sizes n .  

This is the usual justification in practice to use the above formulae for constructing 
confidence intervals and tests for the regression coefficients. However, while small 
deviations from normality may be tolerable for large sample sizes, it is often much 
better and safer to use robust methods (see section Fehler! Verweisquelle 
konnte nicht gefunden werden.) in case of clearly non-Gaussian errors. 
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5 Inference with Multiple Linear Regression Models 

If we assume normally distributed errors, we have seen above that also the 
regression coefficients have a joint Gaussian distribution, and thus also marginals. 
We make use of this for computing confidence intervals and performing hypothesis 
tests. 

5.1 Individual Parameter Tests 

If we are interested whether the j th predictor variable is relevant, we can test the 
hypothesis 0 : 0jH β =  against the alternative hypothesis : 0A jH β ≠ . We can the 
easily derive from the normal distribution that 

 
2 1

ˆ
~ (0,1)

( )
j

T
jj

N
X Xε

β

σ −
 

Since 2
εσ  is unknown, this quantity is not useful. However, if we substitute the 

unknown error variance with the estimate 2ˆεσ , we obtain the so-called t-test 
statistic 

 ( 1)2 1

ˆ
~

ˆ ( )
j

n pT
jj

T t
X Xε

β

σ
− +−

= , 

which has a slightly different distribution than the standard Normal. The present 
Student distribution with ( 1)n p− +  degrees of freedom has a bit more mass in the 
tails, this is to account for the effect of the estimated parameters which are used 
for standardization.  

In practice, we can now quantify the relevance of each individual predictor variable 
by looking at its test statistic, or the corresponding p-value. Note that the latter is 
usually more informative. However, there are 2 problems which arise: 

1) The multiple testing problem: if we repeatedly do hypothesis testing on the 
α =5% significance level, our total type II error (i.e. at least one of the tested 
hypotheses is falsely rejected) increases. In particular, for p  hypothesis 
tests, it is 1 (1 ) pα− − . 

2) It can happen that all individual tests do not reject the null hypothesis (say 
at the 5% significance level), although it is in fact true that some predictor 
variables have a significant effect on the response. This paradoxon can 
occur because of correlation among predictor variables. 

Finally, we come to the interpretation of an individual parameter test: it quantifies 
the effect of the predictor jx on the response Y  after having subtracted the linear 
effect of all other predictor variables on Y . This is different from the corresponding 
test in a simple linear regression, which infers the isolated one-to-one relation 
between jx  and Y . 
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5.2 Global F-Test 

Another question which is of major interest in multiple linear regression analysis is 
whether there is any relation between predictors and response. This can be 
formulated with the null hypothesis 

 0 1 2: ... 0pH β β β= = = = , 

which is tested against the alternative hypothesis that at least one regression 
coefficient is different from zero: 

 : 0A jH β ≠  for at least one { }1,2,...,j p∈ . 

A test statistic can be developed by using the so-called analysis of variance 
(ANOVA) table, which decomposes the total scatter of the Y -values around the 
global mean into a first portion explained by the regression, and a second which 
remains with the residuals. Under the global null hypothesis of no predictor 
influence, the first portion cancels out. If we divide the total scatter (the left hand 
side of the equation) by 2ˆεσ , we obtain a scale-free quantity that serves as a test 
statistic for the global null: 
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Under the null, F  has a F-distribution with p  and ( 1)n p− +  degrees of freedom. 
We can use it for computing the p-value. 

5.3 Coefficient of Determination 

The coefficient of determination, also called multiple R-squared, is aimed at 
describing the goodness-of-fit of the multiple linear regression model. It is defined 
exactly as it was in simple linear regression: 

 

2

2 1

2

1

ˆ( )
[0,1]

( )

n

i
i
n

i
i

y y
R

y y

=

=

−
= ∈

−

∑

∑
, 

and still shows the proportion of the total variance which has been explained by 
the predictors. We have 2 0R =  if 0jβ =  for all 1,...,j p= , and 2 1R =  if the fit is 
perfect, i.e. all residuals are equal to zero. 

As a goodness-of-fit measure, the coefficient of determination needs to be taken 
with a grain of salt. If we add more and more predictor variables to the model, it 
can only increase, but never decreases. However, adding more and more 
variables to the model will always improve the fit on the present training dataset, 
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but may lead to an increased generalization error (see section Fehler! 
Verweisquelle konnte nicht gefunden werden. for further reference on this 
topic). Thus, one often considers an adjusted coefficient of determination, which is 
also found in the R-output: 
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5.4 Confidence and Prediction Intervals 

One more thing that we did not discuss yet is the construction of a confidence 
interval for the expected value of Y , as well as a prediction interval for a future 
observation with given predictor values * *

1 ,..., px x . In section 2.5, we did so for 
simple linear regression, and we could also neatly visualize these intervals.  

Note that we can still compute the intervals for multiple linear regression fits, but 
we cannot display them anymore. The reason is just that we now work in a high-
dimensional space. In spirit and interpretation, however, the intervals are 
equivalent with what we had in simple linear regression. 

A 95% confidence interval for *[ ]E Y  is given by 

( ) ( ) ( )1* * *
0.975; ( 1)ˆ ˆ

T T
n py t x X X xεσ

−

− +± ⋅ ⋅ , 

where * * *
1( ) (1, ,..., )T

px x x=  is the predictor vector. The 95% prediction interval for a 
future observation with such predictor values is then given by: 

 ( ) ( ) ( )1* * *
0.975; ( 1)ˆ ˆ 1

T T
n py t x X X xεσ

−

− +± ⋅ ⋅ + . 

5.5 R-Output 

All the quantities that were discussed in this section on inference and the previous 
on estimation are returned when the summary() function is applied on a linear 
model fit: 

 

> summary(lm(Mortality~log(SO2)+NonWhite+Rain, data=mort…)) 

Residuals: 
     Min       1Q   Median       3Q      Max 
  -76.04   -24.45     0.58    22.59   130.33 
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Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 773.0197    22.1852  34.844  < 2e-16 *** 
log(SO2)     17.5019     3.5255   4.964 7.03e-06 *** 
NonWhite      3.6493     0.5910   6.175 8.38e-08 *** 
Rain          1.7635     0.4628   3.811 0.000352 *** 
--- 
Residual standard error: 38.4 on 55 degrees of freedom 
Multiple R-squared: 0.641,  Adjusted R-squared: 0.6214 
F-statistic: 32.73 on 3 and 55 DF,  p-value: 2.834e-12 

As for simple linear regression, the R output provides the point estimates for 
0 1, ,..., pβ β β  (column “Estimate”), as well as their standard deviations (column „Std. 

Error“), the value of the test statistic T  (column „t value“), and the p-value for the 
respective null hypotheses (column „Pr(>|t|)“).  

Moreover, also the point estimate for 2
εσ  is given („Residual standard error“) with 

corresponding degrees of freedom ( 1)n p− +  („degrees of freedom“), from which 
one directly concludes on the number of observations that were present (here: 59 
observations). Finally, the result for the global F-test is presented, too. 

5.6 Example and Fitting in R 

We observe that for our mortality example, all three individual parameter tests, as 
well as the global F-test show very small p-values, and are thus highly statistically 
significant. Can we thus conjecture that the logged 2SO  concentration really 
affects the mortality rate? 

The answer is: not quite. And the reason is: there are only 3 predictors, and there 
may be a confounding effect. However, the more (statistically significant) predictor 
variables are present in the model, the stronger the evidence for a causal relation 
between a single predictor and the response gets, since the low observed p-value 
is obtained under the presence of all other variables. Thus, we will now add some 
more predictors for explaining the mortality: 

 JanTemp Average temperature in January (in F) 
 JulyTemp Average temperature in July (in F) 
 RelHum Average relative humidity, measured daily at 1pm 
 Rain  Average yearly rainfall, in inches 
 Educ  Median of the years of school a person visited, in years 
 Dens  Population Density per Square Mile 
 NonWhite Percentage of non white population 
 WhiteCollar Percentage of white collar workers 
 Pop  Number of inhabitants in the city 
 House  Average number of persons per household 
 Income Median income  

We now fit this extended model and obtain the following R output:  
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> summary(lm(Mortality ~ JanTemp + JulyTemp + RelHum + Rain +  
             Educ + Dens + NonWhite + WhiteCollar + Pop + 
             House + Income + log(SO2), data=mortality)) 

Residuals: 
    Min      1Q  Median      3Q     Max 
 -70.92  -20.94   -2.77   18.86  105.93 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.164e+03  2.939e+02   3.960 0.000258 *** 
JanTemp     -1.669e+00  7.930e-01  -2.105 0.040790 *   
JulyTemp    -1.167e+00  1.939e+00  -0.602 0.550207     
RelHum       7.017e-01  1.105e+00   0.635 0.528644     
Rain         1.224e+00  5.490e-01   2.229 0.030742 *   
Educ        -1.108e+01  9.449e+00  -1.173 0.246981     
Dens         5.623e-03  4.482e-03   1.255 0.215940     
NonWhite     5.080e+00  1.012e+00   5.019 8.25e-06 *** 
WhiteCollar -1.925e+00  1.264e+00  -1.523 0.134623     
Pop          2.071e-06  4.053e-06   0.511 0.611799     
House       -2.216e+01  4.040e+01  -0.548 0.586074     
Income       2.430e-04  1.328e-03   0.183 0.855617     
log(SO2)     6.833e+00  5.426e+00   1.259 0.214262     
--- 
Residual standard error:  36.2 on 46 degrees of freedom 
Multiple R-squared: 0.7333,  Adjusted R-squared: 0.6637 
F-statistic: 10.54 on 12 and 46 DF,  p-value: 1.417e-09 

When we add more predictors, we observe that the logged 2SO  concentration with 
a p-value of 0.214 is no longer significant. Do we now have to face the fact that 
ambient air pollution has no effect on mortality? We should not be too quick with 
such a conjecture, and do some model diagnostics first (see section 6) 

Additionally, collinearity, i.e. correlation among predictor variables can hamper 
interpretation even further. Note that if two predictors 1x  and 2x  are uncorrelated, 
then the estimated regression coefficients 1̂β  and 2β̂  remain the same, no matter 
whether only one of the two, or both variables are included in the model. For 
collinear predictors, this unfortunately is not the case. 

With collinear predictors, it can also happen that the global F-test shows a highly 
significant result, while all the individual parameter tests are not even rejected. The 
reason is that one single variable does not add much if all the others are already 
included in the model. The ensemble, however, still has an effect on the response.  

Thus, one may conjecture that uncorrelated predictors are preferable. This is true. 
However, while this may be achieved in designed experiments, it will almost never 
be the case with observational studies. There, we have to live with collinear input 
variables. The only thing we can do is to check the “amount of collinearity” in our 
data. This is done by a multiple linear regression of all remaining predictors on jx , 
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and computing the respective coefficient of determination 2
jR . Instead of 

interpreting this quantity, one often regards the so-called variance inflation factor: 

 2

1
1j

j

VIF
R

=
−

. 

As a rule of the thumb, a 10VIF >  is dangerous. It means that inference (i.e. 
interpreting p-values from individual parameter tests and the global F-test) should 
be “handled with care”, and drawing conclusions on causality should be left out. 
However, the fitted values are not affected by this, and also prediction with a 
model fitted from collinear predictors is always fine. 

5.7 Partial F-Tests 

So far, we discussed individual parameter tests, as well as the global F-test. Thus, 
we either infer the influence of only one single predictor at a time or of all p  
predictors simultaneously. The question is whether we could also check if a group 
of predictors has a significant effect on the response. In our mortality example, we 
could e.g. ask the question, whether the subset of all meteorological variables has 
a significant effect on the response. 

Thus, our goal is to test the effect of p q−  predictors simultaneously. For doing so, 
we partition the parameter vector β  and the design matrix X  into two parts each: 
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, and 1 2[ ]X X X= . 

Here, the dimensions are ( 1)n q× +  for 1X  and ( )n p q× −  for 2X . We can the 
rewrite the model as: 

 1 1 2 2Y X X Xβ ε β β ε= + = + + . 

We want to infer whether the collective subset of 1,...,q px x+  has an influence on the 
response. This leads to the null and alternative hypotheses: 

 0 2: 0H β =  versus 2: 0AH β ≠ . 

In words, the null hypothesis means “the last p q−  predictors in my model do not 
have an effect on the response”, whereas the alternative is “at least one of the last 
p q−  predictors is meaningful”. 
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In fact, we do perform and compare two multiple linear regression analyses. The 
one under the alternative hypothesis AH  is including the full set of p  predictors, 
whereas the one under the null hypothesis 0H  is with the reduced set of only the 
first q  predictors.  

Naturally, if the differences in the quality of the two fits are small, we would prefer 
the smaller model, while a large difference would speak for the larger model. Thus, 
a test statistics could be based on the difference in the residual sum of squares 
(RSS) between the two models, relative to the RSS from the large model: 

 0 A

A

H H

H

RSS RSS
RSS
−

, where 2

1

ˆ( )
n

i i
i

RSS y y
=

= −∑   

with ˆiy  from the respective model. While this is almost it, we also need to take the 
number of observations as well as the difference in the number of predictors into 
account for a formal test. It can be shown that: 

0
, ( 1)

( 1) ~A

A

H H
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p q RSS − − +

−− +
= ⋅

−
. 

Thus, the relative difference in the residual sum of squares needs to be multiplied 
with the degrees of freedom of the large model, and divided by the difference in 
the number of predictors. When this is small, we cannot reject the null hypothesis, 
and the small model is appropriate.  

Indeed the test statistic has an F-distribution with p q−  and ( 1)n p− +  degrees of 
freedom. If the realized value F  exceeds the 95th percentile of that distribution, the 
null hypothesis is rejected. 

Example 

Using the above methodology, we can now test whether the subset of 
meteorological variables “jantemp”, “julytemp”, “relhum” and “rain” affect the 
mortality as a collective. We obtain a test statistic of 2.92F = , which has an F-
distribution with 4 and 46 degrees of freedom. The resulting p-value is 0.031, we 
thus reject the null hypothesis and conclude that meteorology has a significant 
effect on the mortality. 
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6 Model Diagnostics 

6.1 Why Model Diagnostics? 

We need to check the assumptions we made for fitting a multiple linear regression 
model. Why? One reason is because we want to make sure that the estimates we 
produce and the inference we draw is valid. This seems rather technical and also 
somewhat fussy and boring. 

However, there is a second, usually even more important reason to perform model 
diagnostics: any potential deviations that appear can help us to improve the 
model. In fact, we can even go as far as saying “it is all in the residuals”, i.e. most 
of what we can learn about how to enhance a regression analysis is derived from 
some clever diagnostics plots.  

Such enhancement include response and/or predictor transformations, inclusion of 
further predictors or interactions between predictors into the model, weighted 
regression or using more generally formulated, robust models, which can really 
deal with the problem at hand. This is what explorative data analysis is like – we fit 
a model, try some ideas, check the results and try to improve. 

6.2 What Do We Need to Check For, and How? 

We restate the assumptions we made for the multiple linear regression model. The 
goal in model diagnostics is to detect potential deviations from them. 

[ ] 0iE ε = , 

2( )iVar Iεε σ= , 

( , ) 0i jCov ε ε = for all i j≠ , 

2~ (0, ), . .i N I i i dεε σ . 

Please remember that while the first three conditions are necessary for performing 
least square estimation, the last condition is only required for any hypothesis tests, 
as well as confidence and prediction intervals. 

There are graphical and numerical diagnostic techniques. While the former are far 
more flexible and versatile, they require some expertise in interpretation. The latter 
require no intuition, but are much narrower in scope, and often lack of the power to 
really detect what is important – we thus focus on graphical diagnostics. This is in 
line with our view that regression analysis is an interactive and iterative process. 
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6.3 Checking Error Assumptions 

We wish to check the independence, constant variance and normality of the 
errors. The errors iε  themselves are not observable, but we can examine the 
residuals ir , which are estimates of the errors. However, the two are not the same, 
and also have somewhat different properties. Even under the assumption of 

2( )Var Iεε σ= , we have 2( ) ( )Var r I H εσ= − .  

Thus, although the errors may have equal variance and be uncorrelated, the 
residuals do not. Fortunately, the impact of this is usually small, and diagnostics 
are often applied to the residuals in order to check the assumptions on the error. 
The alternative is to use the so-called standardized or studentized residuals *

ir : 

 *

ˆ 1
i

i
ii

rr
hεσ

=
−

 

Constant Variance 

It is not possible to check the assumption of constant variance just by examining 
the residuals alone – some will be large and some will be small, but this proves 
nothing. We need to check whether the variance in the residuals is related to some 
other quantity, and this should not be the case, no matter what that quantity is. 

The most popular diagnostic means is the Tukey-Anscombe plot, where the 
residuals ir  are plotted against the fitted values ˆiy . If all is well, we should see 
constant variation in the vertical direction, and the scatter should be symmetric 
around zero. Things to look for are heteroscedasticity (non-constant variance) and 
non-linearity. The red smoother line that is plotted in R aids for detecting non-
linearity. 
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The scale-location plot is similar to the Tukey-Anscombe plot. It also has the fitted 
values on the x -axis, but the y -axis holds the square root of the standardized 
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residuals, in place of the raw residuals ir . Thus, it folds over the bottom half of the 
first plot to increase the resolution for detecting non-constant variance. The red 
smoother line again helps in detecting violations. While we observe some increase 
on the right, we consider this as only slight evidence for non-constant variance. 

Moreover, we can and should also plot the residuals ir  against ix , i.e. predictors 
that are both in and out of the model. We must not see structures in any of these 
plots. If we find some, that means the model is inadequate. 

Normality 

The assumption of normally distributed errors can be checked with the normal plot, 
i.e. we plot the ordered residuals against the corresponding quantiles of the 
Gaussian distribution. If the errors iε  are normally distributed, then this also holds 
for the residuals ir . Thus, the normal plot should (nearly) be a straight line. 
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The assumption of Gaussian errors is well fulfilled here, except for two outliers: 
New Orleans and Albany. We will discuss these in depth in section 6.5 

Correlated Errors 

For checking the independence of the errors we can plot the residuals ir  versus 
their observation number i , or if available, versus the time it  of recording. Here, 
the residuals vary randomly around the zero line, there is thus no indication for 
serial correlation. If there was a non-random structure, this would be a model 
violation, and we might need to consider time series regression, respectively the 
generalized least squares approach, which is not discussed in this course. 
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6.4 Influential Data Points and Outliers 

There are situations where the regression coefficient estimates are strongly 
influenced by one single, or just a few data points. If that is the case, it was 
beneficial to identify these. However, the residual plots mostly only show them, if 
they are not only influential points, but also outliers. 
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A crucial sub-category of influential data points are the so-called leverage points. 
These are data with some extreme x -values. The plots below illustrate this: the 
top left panel shows a “normal” situation without any specialties. In the top right 
panel, there is a leverage point; however it is not influential on the regression line. 
This is different in the bottom left panel: the leverage point now has considerable 
influence, i.e. the red regression line differs markedly from the blue one, which 
was computed by omitting the leverage point. Finally, the bottom right panel shows 
an outlier, which has only little influence on the regression line. This is because it 
has an x -value which is close to x . 
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Leverage 

Thus, a simple strategy for identifying data points which are influential on 
estimates and hypothesis test would be to just repeat the analysis after having 
them deleted. However, doing this would be quite laborious, and is in fact not 
necessary. We can compute the so-called leverages and the Cook’s distance, and 
by using them, are able to identify influential data points in a single computing 
step. 

The leverages are the diagonal elements iih  of the hat matrix H  which was 
introduced in section 0. Their meaning is as follows: if we change iy  by iyΔ , then 

ii ih yΔ  is the change in the fitted value ˆiy . Thus, a high leverage for the i th data 
point means that it strongly forces the regression line to fit well to it.   

We have 0 1iih≤ ≤  for all i , and 1iih p= +∑ . All data points with values exceeding 
2( 1) /iih p n> +  are regarded as leverage points. As we have seen above, 

especially the ones with high leverage and high residual ir  are dangerous, i.e. 
have high potential to strongly affect the results of our regression analysis. Plotting 
the residuals ir  versus the leverages iih  can thus be very beneficial. 
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The Leverage Plot shows how strongly a data point forces the regression line to fit 
through it. Again, it’s the two cities of York and New Orleans which lie within the 
“danger zone”. The rule of the thumb is that all data points exceeding the 0.5 line 
(in Cook’s Distance, see below) in the plot are to be treated as suspicious, 
whereas points exceeding the 1.0 line require (mandatory) further investigation. 

Cook’s Distance 

An even more direct measure for the change in the regression line by omitting the 
i th data point is Cook’s distance. For data point i , it is defined by 
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Note that ( )ˆ j iy  is the fitted value for the j th instance, when the regression is done 
without the i th data point. Does this mean that we now really have to perform 
( 1)n +  regressions to find the iD . The answer is no, because there is a relation 
between ,i iiD h  and ir : 
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Where *
ir  is the so-called standardized or studentized residual. The differences 

between *
ir  and ir  are usually small, or can even be neglected. The definition is: 
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. 

Data points where the Cook’s distance 1iD >  need further investigation; because it 
might well be that they spoil your regression analysis. In the mortality dataset, the 
Cook’s Distance plot shows that omitting the city of York from the regression 
analysis would change the results most. New Orleans, and to a much lesser 
extent, Miami, seem to be influential, too. However, none of the data points 
exceeds the limit of 1iD > . 

Outliers 

We have seen above that the “most dangerous” data points are the ones that are 
leverage points and outliers at the same time. Also, we explained that Cook’s 
Distance is a well suited measure to identify such points. However, here are some 
more things to consider about the presence of outliers: 

1) Two or more adjacent outliers can hide each other. 

2) An outlier in one model may not be an outlier in another when the variables 
have been changed or transformed. One usually needs to reinvestigate the 
question of outliers when the model is changed. 

3) The error distribution may not be Gaussian and thus, larger residuals may 
be expected. For example, day-to-day changes in stock indices seem 
Gaussian over large periods of times, but large changes also happen once 
in a while. 

4) A single or very few outliers are usually much less of a problem in larger 
datasets. A single point will mostly not have the leverage to affect the fit 
very much. It is still worth identifying outliers if these types of observations 
are worth knowing about in the particular application.  

Suppose that you detected one or several outliers in your data. What to do with 
them? The following can serve as a practical guide: 
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a) Check for typos first. These are relatively common. However, this requires 
the original source of the data. Make sure you do not lose it, or lose contact 
to it. 

b) Examine the physical context – why did it happen? Sometimes, the 
discovery of an outlier may be of singular interest. On the other hand, it was 
often the case that scientific discoveries arose from noticing unexpected 
aberrations. 

c) Exclude the outlier(s) from the analysis, and re-fit the model. The 
differences can be substantial and make the difference between getting a 
statistically significant result, or having some “garbage” that cannot be 
published. To avoid any suggestion of dishonesty always report the 
existence of outliers that were removed from the final model. 

d) Suppose there are outliers that cannot be reasonably identified as mistakes 
or aberrations, but are viewed as naturally occurring, e.g. due to long-tailed 
error distribution. Rather than excluding these instances and the using least 
squares, it is more efficient and reliable to use robust regression, as 
explained in section 6.7 

6.5 Example: Mortality Dataset 

From the model diagnostics, we conjecture that York and New Orleans are the 
most influential data points. To be on the safe side, it is reasonable to re-run the 
regression analysis without these two data points. The results are presented here, 
please compare to section 5.6: 

> summary(lm(Mortality ~ JanTemp + JulyTemp + RelHum + Rain +  
          Educ + Dens + NonWhite + WhiteCollar + Pop + House+  
          Income + log(SO2), data = mortality[-c(36, 58), ]) 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  9.025e+02  2.564e+02   3.521 0.001016 **  
JanTemp     -1.246e+00  6.714e-01  -1.856 0.070168 .   
JulyTemp    -1.317e-01  1.693e+00  -0.078 0.938339     
RelHum       3.984e-01  9.286e-01   0.429 0.670023     
Rain         1.399e+00  4.630e-01   3.022 0.004174 **  
Educ        -5.788e+00  9.571e+00  -0.605 0.548430     
Dens         9.360e-03  4.210e-03   2.223 0.031377 *   
NonWhite     3.651e+00  9.021e-01   4.048 0.000206 *** 
WhiteCollar -1.046e+00  1.371e+00  -0.763 0.449775     
Pop         -1.175e-06  3.478e-06  -0.338 0.737058     
House        1.390e+00  3.430e+01   0.041 0.967857     
Income      -9.580e-05  1.118e-03  -0.086 0.932089     
log(SO2)     1.388e+01  5.151e+00   2.695 0.009926 **  
--- 
Residual standard error: 30.31 on 44 degrees of freedom 
Multiple R-squared: 0.7929,  Adjusted R-squared: 0.7364 
F-statistic: 14.04 on 12 and 44 DF,  p-value: 2.424e-11 
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The most important observations from this analysis are that the residual standard 
error is now smaller, and the coefficient of determination increased. Thus, the fit is 
better now. Moreover, the logged 2SO  is now significant again. Might it be that the 
pollution has an influence on the mortality? 

We now turn our attention to the interesting question why the cities of York and 
New Orleans were influential data points. Plotting some of the predictors, maybe 
even against other predictors and identifying outlying data points may help. In the 
plots below, we observe that the city of York has a considerably higher population 
density than all the other towns. It turned out that the definition of districts with 
which the population density was defined was somewhat suboptimal. 

Moreover, it is also striking that the average years of education in York are much 
lower than elsewhere, but the percentage of white collar workers is higher. This 
anomaly is explained by the predominance of Amish people in that region. It is 
thus, an inhomogeneity of the sample. 
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6.6 Weighted Regression 

We consider the following generalization of the multiple linear regression model: 

 Y X β ε= + , where 2~ (0, )N εε σ Σ , with IΣ =  

Thus, the errors do no longer have constant variance, and may, in case of a non-
diagonal Σ , even be correlated. While the case of correlated errors can be dealt 
with using the generalized least squares approach, it is beyond the scope of this 
scriptum. We will here focus on the simpler case where Σ  is a diagonal matrix, 
which can be solved by weighted linear regression. Let 
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The iw  can be interpreted as weights. They should be such that observations with 
large variance have low weight, and vice versa. This makes sense, because the 
instances with low variance will typically have smaller errors and should thus have 
more impact on the fit. How could we choose the weights? 

• If the iY  are means of in  observations, we choose i iw n= . This could be the 
case if the response is the average over measurements from different days, 
but the number of days is not equal for all instances. 

• There are cases where it is clear that the variance is proportional to some 
predictor x . In that case, we would choose 1/i iw x= . 

• In all other cases, where we “just” observe non-constant variance in the 
diagnostic plots and do not have an idea about its source, we would 
estimate the weights from a non-weighted least squares regression. 

The regression coefficients in weighted regression are obtained by minimizing the 
sum of weighted least squares: 

 2

1

n

i i
i

w r
=
∑  

This causes some changes in the normal equations, but there is still an explicit 
and unique solution for given weight, provided the design matrix X  has full rank. 

6.7 Robust Regression 

When the errors are normally distributed, least squares regression is clearly the 
best way to proceed. But what if they are not Gaussian? Well, then, other methods 
need to be considered. Of particular concern are long-tailed error distributions.  

The poor man’s approach is to declare the largest residuals as being outliers 
remove them from the dataset and still use least squares. However, this should 
only be applied when one is convinced that the outliers represent truly incorrect 
instances. In cases, where they are non-faulty observations, it is much better to 
use a robust regression method that down-weights the effect of larger errors.  

The Huber method is the default choice of the rlm() function in 
library(MASS). It is beyond the scope of this course to give further details than 
to say that this is a procedure for limiting the effect of outliers. The use of the 
function is exactly as the one of lm(). 

We have seen in the Normal plots above that there were some outliers in the 
mortality dataset. Thus, using robust regression on this dataset is justified, and it 
will be interesting to compare results. The summary output is: 

> summary(fit.rlm) 
 
Call: rlm(Mortality ~ JanTemp + JulyTemp + RelHum + Rain +  
          Educ + Dens + NonWhite + WhiteCollar + Pop +  
          House + Income + log(SO2), data = mortality) 
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Coefficients: 
            Value    Std. Error t value  
(Intercept) 945.4414 251.6184     3.7574 
JanTemp      -1.2313   0.6788    -1.8139 
JulyTemp     -0.1605   1.6598    -0.0967 
RelHum        0.5576   0.9461     0.5894 
Rain          1.3230   0.4699     2.8154 
Educ         -3.5682   8.0884    -0.4412 
Dens          0.0055   0.0038     1.4461 
NonWhite      4.1074   0.8665     4.7403 
WhiteCollar  -2.4711   1.0820    -2.2838 
Pop           0.0000   0.0000     0.2237 
House        -1.3143  34.5831    -0.0380 
Income        0.0003   0.0011     0.2212 
log(SO2)     13.0484   4.6444     2.8095 
--- 
Residual standard error: 30.17 on 46 degrees of freedom 

First, we observe that there are some differences in the output. We are missing 
the coefficient of determination and the global F-test. The reason is because they 
cannot be calculated with this robust regression model. Similarly, the p-values for 
the individual parameter tests are not given, although we can use the asymptotic 
normality of the estimator to make approximate inference using the t-values. 

As a next step, we do now compare the coefficient as well as the t-values from the 
least squares and the robust fit. We have: 

            coef.lm coef.rlm  t.lm t.rlm 
(Intercept) 1163.91   945.44  3.96  3.76 
JanTemp       -1.67    -1.23 -2.10 -1.81 
JulyTemp      -1.17    -0.16 -0.60 -0.10 
RelHum         0.70     0.56  0.63  0.59 
Rain           1.22     1.32  2.23  2.82 
Educ         -11.08    -3.57 -1.17 -0.44 
Dens           0.01     0.01  1.25  1.45 
NonWhite       5.08     4.11  5.02  4.74 
WhiteCollar   -1.93    -2.47 -1.52 -2.28 
Pop            0.00     0.00  0.51  0.22 
House        -22.16    -1.31 -0.55 -0.04 
Income         0.00     0.00  0.18  0.22 
log(SO2)       6.83    13.05  1.26  2.81 

Except for the intercept, which is of minor importance, the difference in the 
estimated coefficients is mostly small. There are some notable exceptions 
concerning Educ, House and log(SO2). Moreover, the changes in the t-values 
are mostly unimportant. An exception to this is what we observe for log(SO2). 
With robust regression, the t-value is 2.81, which would be (asymptotically) 
significant on the 5%-level. The decision whether pollution contributes to mortality 
is really controversial! 
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7 Polynomial Regression and Categorical Input 

7.1 Polynomial Regression 

So far, we only considered regression examples where the predictors were 
continuous, quantitative variables describing totally different aspects of the 
observations. However, we never made a restriction requiring this. The linear 
model Y X β ε= +  is a general model that is linear in the unknown parameters β . 
This also includes the important class of polynomial regression models. For 
example, the polynomial of order d  in one variable 

 2
0 1 2 ... d

dY x x xβ β β β ε= + + + + +  

is a multiple linear regression model, too, even though it fits a polynomial. Such 
models are widely used in cases where the relation to the response is curvilinear, 
because even complex nonlinear relations can be modeled by polynomials. In 
other words, our goal here is to improve the fit between x  and Y  by including 
quadratic and/or cubic terms, or some of even higher orders, into the model. 

7.2 Example: How to Determine the Order d  

Let us illustrate polynomial regression with an economic dataset comprising 
observations made in 50 different countries. The data are averages taken over 10 
years from 1960 to 1970, in order to remove any business cycles or other 
unwanted short-term fluctuations. Variable dpi is the per capita disposable 
income in US dollars, ddpi is the percentage rate of change in per capita 
disposable income, and sr is the aggregate personal saving divided by disposable 
income. The percentage of population under 15 (pop15) and over 75 (pop75) are 
also recorded. The data come from a study of Belsley, Kuh and Welsch 
(“Regression Diagnostics: Identifying Influential Data and Sources of Collinearity”, 
Wiley, New York, 1980). 
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We consider sr as the response, and ddpi as the predictor. The simplest 
approach is to fit a simple linear regression. The summary is as follows: 

> summary(lm(sr ~ ddpi, data = savings)) 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   7.8830     1.0110   7.797 4.46e-10 *** 
ddpi          0.4758     0.2146   2.217   0.0314 *   
--- 
Residual standard error: 4.311 on 48 degrees of freedom 
Multiple R-squared: 0.0929, Adjusted R-squared: 0.074  
F-statistic: 4.916 on 1 and 48 DF,  p-value: 0.03139 

We observe that ddpi is weakly significant with a p-value of 0.03. The regression 
line does not fit the data too badly, but not overly well either. A brief glance at the 
Tukey-Anscombe plot tells us, that the linear term only does not result in zero 
expectation for the errors. While the assumption of Gaussian errors does seem to 
be accurately fulfilled, there is also the country of Libya, which is a very influential 
data point. 
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The situation with non-zero expectation for the error term may be much improved 
by adding the square of ddpi into the model. We can then fit a curvilinear relation 
that is more appropriate for this dataset. The blue line in the scatter plot already 
indicated this. The summary output is as follows: 

> summary(lm(sr ~ ddpi + I(ddpi^2), data = savings)) 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  5.13038    1.43472   3.576 0.000821 *** 
ddpi         1.75752    0.53772   3.268 0.002026 **  
I(ddpi^2)   -0.09299    0.03612  -2.574 0.013262 *   
--- 
Residual standard error: 4.079 on 47 degrees of freedom 
Multiple R-squared: 0.205, Adjusted R-squared: 0.1711 
F-statistic: 6.059 on 2 and 47 DF,  p-value: 0.004559 

Both terms are now significant, the linear term even more strongly than before. 
Also, the lower estimated value for the error variance and the higher coefficient of 
determination indicate that the fit is now better. 
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This impression is confirmed by the diagnostic plots. Tukey-Anscombe and 
Normal plot are now without any flaws. The country of Libya is still the single most 
influential data point. However, its Cook Distance is markedly lower than before. 
Indeed, it has much less of a handle on the fit in the polynomial regression model. 
Still, it would be interesting to investigate the fit when Libya is omitted. We leave 
this as an exercise; the changes are not pronounced enough to show them here. 

Because the quadratic term improved the fit and both the terms in the model are 
significant, we may try to add a cubic term. The summary output then is as follows: 

> summary(lm(sr~ddpi + I(ddpi^2) + I(ddpi^3), data = savings) 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)   
(Intercept)  5.145e+00  2.199e+00   2.340   0.0237 * 
ddpi         1.746e+00  1.380e+00   1.265   0.2123   
I(ddpi^2)   -9.097e-02  2.256e-01  -0.403   0.6886   
I(ddpi^3)   -8.497e-05  9.374e-03  -0.009   0.9928   
--- 
Residual standard error: 4.123 on 46 degrees of freedom 
Multiple R-squared: 0.205, Adjusted R-squared: 0.1531  
F-statistic: 3.953 on 3 and 46 DF,  p-value: 0.01369 

None of the tree terms is significant anymore. We take this as a signal that the 
cubic regression is not appropriate here and stick to the quadratic. The global F-
test, however, still shows a p-value of 0.01. Thus, the predictors have a significant 
effect on the response. 

7.3 Powers Are Strongly Correlated Predictors 

> cor(cbind(ddpi, ddpi2=ddpi^2, ddpi3=ddpi^3)) 
           ddpi     ddpi2     ddpi3 
ddpi  1.0000000 0.9259671 0.8174527 
ddpi2 0.9259671 1.0000000 0.9715650 
ddpi3 0.8174527 0.9715650 1.0000000 

The reason is that the predictors, i.e. the powers of ddpi are strongly correlated, 
as can be seen from the correlation matrix above. Thus, every of the terms can 
add a little of its predictive power towards the response, but none of them is really 
required, as long as the other predictors are in the model. 

Having such strongly correlated input variables is a rather unwanted property. In 
the context of regression, we speak of collinear input predictors. For a general 
discussion, we refer to section 9.3. Here, we show how the problem can be 
somewhat mitigated in the context of polynomial regression. Instead of the original 
predictor dppi and its powers, we use the centered variables 
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Indeed, the centered variable and its powers show at least partly lower correlation. 
The matrix is: 

> cor(cbind(z.ddpi, z2.ddpi, z3.ddpi)) 
           z.ddpi   z2.ddpi   z3.ddpi 
z.ddpi  1.0000000 0.7445202 0.7321169 
z2.ddpi 0.7445202 1.0000000 0.9791666 
z3.ddpi 0.7321169 0.9791666 1.0000000 

By working with these variables, the summary output now looks like this: 

> summary(lm(sr~z.ddpi+I(z.ddpi^2)+I(z.ddpi^3),dat=z.savings) 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.042e+01  8.047e-01  12.946  < 2e-16 *** 
z.ddpi       1.059e+00  3.075e-01   3.443  0.00124 **  
I(z.ddpi^2) -9.193e-02  1.225e-01  -0.750  0.45691     
I(z.ddpi^3) -8.497e-05  9.374e-03  -0.009  0.99281     
--- 
Residual standard error: 4.123 on 46 degrees of freedom 
Multiple R-squared: 0.205, Adjusted R-squared: 0.1531 
F-statistic: 3.953 on 3 and 46 DF,  p-value: 0.01369 

At least the linear term is now significant again. However, the transformation could 
not fully resolve the issue with the quadratic and cubic terms. Note that this last 
model has different regression coefficient and different inference results than the 
one on the original predictors above. On the other hand, the fitted values, residual 
standard error, coefficient of determination and the global F-test are exactly as 
they were on the original variables. 

We conclude our example on polynomial regression here by making the remark 
that we can of course have arbitrarily complex models where there are various 
predictors, some of them with their powers included, and other without. Finally, a 
word of caution: extrapolation with polynomial models can be extremely 
hazardous, much more so compared to when only the original predictors are 
present. 

7.4 Dummy Variables 

The variables we considered so far were continuous, i.e. temperature, distance, 
pressure, etc. However, there is no need to do so. It is perfectly valid to use 
categorical predictors, such as e.g. sex (male or female), status variables 
(employed or unemployed), shifts (day, evening, night). In general, these 
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categorical variables have no natural scale of measurement. Thus, we must 
assign a set of levels to a categorical variable to account for the effect that the 
variable may have on the response. This is done through the use of indicator 
variables. In the regression context, they are better known as dummy variables. 

7.5 Example: How to Fit with Binary Categorical Variables 

Suppose that our goal is to relate the life of a cutting tool (Y ) used on a lathe (in 
German: “Drehbank”) in hours to the speed of the machine in rpm ( 1x ) and the 
type of cutting tool used ( 2x ). This second predictor is categorical and here has 
two levels A and B that codes for two different cutting tools. We will use an 
indicator variable that takes values 0 and 1 to identify the tool types – this is a so-
called dummy variable. 

 2

0
1

tool type A
x

tool type B
⎧

= ⎨
⎩

 

The choice of 0 and 1 to identify the levels of this categorical predictor is arbitrary. 
In fact, any two distinct values for 2x  would be satisfactory, although 0 and 1 are 
the normal choice. We can display the data in a scatter plot of hours vs. rpm, and 
distinguish the two tool types by different plotting characters. 
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The plot also contains the regression lines for tool types A and B, respectively. We 
will now explain how they are found. The regression model for the lathe example 
does at first sight look no different from one with continuous predictors: 

 0 1 1 2 2Y x xβ β β ε= + + + . 
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With R, fitting regression models with categorical predictors is straightforward. We 
do not even need to take care of the dummy variables ourselves. It is sufficient 
that the categorical predictor is a factor, i.e. class(lathe$tool)=”factor” 
The summary output for the regression model is: 

> summary(lm(hours ~ rpm + tool, data = lathe)) 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 36.98560    3.51038  10.536 7.16e-09 *** 
rpm         -0.02661    0.00452  -5.887 1.79e-05 *** 
toolB       15.00425    1.35967  11.035 3.59e-09 *** 
--- 
Residual standard error: 3.039 on 17 degrees of freedom 
Multiple R-squared: 0.9003,  Adjusted R-squared: 0.8886  
F-statistic: 76.75 on 2 and 17 DF,   p-value: 3.086e-09 

We will now turn our attention to the interpretation of this regression model. We 
first consider an observation i  where the tool is of type A. There, we have 2 0ix =  
and thus the model simplifies to: 

 0 1 1 2 0 1 10i i i i iY x xβ β β ε β β ε= + + ⋅ + = + + . 

Thus, the relation between tool life and lathe speed for tool type A is a straight line 
with intercept 0 36.99β =  and slope 1 0.027β = − . Important: note that the slope is 
generally not equal to the one we would obtain from a simple linear regression for 
tools of type A only!  

Now conversely, for any observation j  with tool type B, we have 2 1jx = , and thus: 

 0 1 1 2 0 2 1 11 ( )j j j j jY x xβ β β ε β β β ε= + + ⋅ + = + + +  

That is, for tool type B the relation between tool durability and lathe speed is also a 
straight line with the same slope 1 0.027β = − , but different intercept 0 2 51.99β β+ = . 
Thus, the model estimates a common, identical slope coefficient for the two tool 
types. 

The regression coefficient 2β  of the dummy variable 2x  accounts for the additive 
shift in durability of tool type B vs. tool type A, i.e. measures the difference in mean 
tool life when changing from tool type A to tool type B. Thus, we have the proof for 
the impression that the two regression lines in the scatter plot above are parallel.  

To make the regression analysis complete, we now also have to check the 
diagnostic plots. We leave this as an exercise, because there are no peculiarities 
for this specific example. Remember that with categorical input variables, it is most 
instructive to use different plotting symbols for tool types A and B. 
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7.6 Interactions 

In the above example, the regression line for the tool types A and B had different 
intercept, but identical slope. In this particular example, the fit seemed to be pretty 
well even under this restriction. However, we can easily imagine a situation where 
two parallel regression lines are not appropriate. The question this section deals 
with is whether and how a model with two different regression lines can be fit. It is 
possible to model this situation with a single regression equation by using indicator 
variables. The model is: 

 0 1 1 2 2 3 1 2Y x x x xβ β β β ε= + + + + . 

We observe that a cross product between lathe speed 1x  and the indicator 
variable denoting tool type 2x  has been added to the model. To interpret the 
parameters in this model, we first consider an observation i  with tool type A. 
Remember; this means that the dummy variable 2x  is equal to 0. 

 0 1 1 2 3 0 1 10 0i i i i iY x xβ β β β ε β β ε= + + ⋅ + ⋅ + = + +  

Thus, this is again the regression line with intercept 0β  and slope 1β . For tool type 
B, we have 2 1x =  for the dummy variable. Thus, the regression model becomes: 

 0 1 1 2 3 1 0 2 1 3 11 1 ( ) ( )j j j j j jY x x xβ β β β ε β β β β ε= + + ⋅ + ⋅ + = + + + +  

This is a straight-line model with intercept 0 2β β+  and slope 1 3β β+ . Thus, the 
interaction model defines two regression lines with different intercepts and 
different slopes. Therefore the parameter 2β  reflects the change in the intercept 
associated with changing from tool type A to tool type B, and 3β  indicates the 
change in the slope associated with this change. 
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The scatter plot of hours vs. rpm is shown below, together with the two 
regression lines that are no longer parallel under the interaction model. Next, we 
have a look at the summary output. Note that we do no longer separate the 
predictors by a “+” in function lm(), but now use a “*”. This means that we do not 
restrict to the main effects, but also include the interaction term. 

> summary(lm(hours ~ rpm * tool, data = lathe)) 

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 32.774760   4.633472   7.073 2.63e-06 *** 
rpm         -0.020970   0.006074  -3.452  0.00328 **  
toolB       23.970593   6.768973   3.541  0.00272 **  
rpm:toolB   -0.011944   0.008842  -1.351  0.19553     
--- 
Residual standard error: 2.968 on 16 degrees of freedom 
Multiple R-squared: 0.9105,  Adjusted R-squared: 0.8937  
F-statistic: 54.25 on 3 and 16 DF,  p-value: 1.319e-08 

We have seen in the scatter plot above, that there is a large vertical shift between 
the two regression lines. The slope however, only differs little. An obvious question 
is whether fitting two regression lines with different slopes is necessary, i.e. 
whether the difference is statistically significant. This amounts to the test of 

 0 3: 0H β =  against 3: 0AH β ≠ . 

This is an individual parameter test for the interaction term, and the result can be 
directly read from the summary output. The p-value is 0.196, thus not statistically 
significant. If there are no further (practical) reasons strongly speaking for different 
slopes, we would fit parallel lines. 

Note that the (full) interaction model always yields the same result as two separate 
simple linear regressions on tools of type A, and tools of type B. However, there is 
still an advantage of using the interaction model: the test whether or not the two 
regression models are identical is straightforward. We have to test 

 0 2 3: 0H β β= =  against 2 3: 0 / 0AH and orβ β≠ ≠ . 

This is a partial F-test, where we try to exclude the interaction and the dummy 
variable at the same time. The R-code and the output is as follows: 

> fit1 <- lm(hours ~ rpm, data=lathe) 
> fit2 <- lm(hours ~ rpm * tool, data=lathe) 
> anova(fit1, fit2) 
Model 1: hours ~ rpm 
Model 2: hours ~ rpm * tool 
  Res.Df     RSS Df Sum of Sq      F    Pr(>F)     
1     18 1282.08                                   
2     16  140.98  2    1141.1 64.755 2.137e-08 *** 
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We observe that the p-value is very small, and the partial F-test thus highly 
significant. While there is no evidence for different slope in this example, there is 
strong evidence of a difference (in either slope or intercept). Regarding the scatter 
plot, with the pronounced vertical shift between tool types A and B, this does not 
surprise us. 

Finally, we conclude this section by stating that the use of interaction models is not 
restricted to a combination of continuous and categorical predictors. In this case, 
they can be visualized most easily. However, we can have them between any type 
of predictors. They are appropriate whenever there is, or whenever we suspect a 
change in the effect of one predictor on the response, conditional on the level of 
another predictor. 

7.7 Categorical Input with More than Two Levels 

An obvious extension to the previous example with lathe cutting tools would be to 
consider three or more types of tools instead of only two. The tool variable then is 
still categorical, but no longer binary, and we need more dummy variables. For 
example, suppose that there are three tool type A, B and C. We then require two 
dummy variables to incorporate them into the model. The coding is as follows: 

2 3

0 0
1 0
0 1

x x
for observations of type A
for observations of type B
for observations of type C

 

In general, a qualitative variable with a  levels is represented by 1a −  dummy 
variables, each taking values 0 and 1. Note that with this coding, the first level 
(here: tool type A) is always the reference. This is also how R codes categorical 
input variables by default: the first factor level is the reference. There are, 
however, different options for coding, called contrasts. This is more a topic in 
analysis of variance, thus we do not discuss that issue here. 

The main effects regression model with three types of tools and their respective 
dummy variables is now: 

 0 1 1 2 2 3 3Y x x xβ β β β ε= + + + +  

This would fit three parallel regression lines, where each has a different intercept. 
However, when we closely observe the scatter plot below, we gain the impression 
that the durability of tool type C seems to depend much less on rpm than the other 
two. While at slow speeds, its lifetime seems to be inferior to the type B tools, they 
seem to last longer at faster speeds. Because the main effects model cannot deal 
with the apparently different slopes, we fit the interaction model: 

 0 1 1 2 2 3 3 4 1 2 5 1 3Y x x x x x x xβ β β β β β ε= + + + + + +  
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The interpretation of this model is as before with binary categorical input. We leave 
it as an exercise to write down the cases for observations i , j  and k  of tool types 
A, B and C. The regression fit with R is again straightforward; we only need the 
tool variable to be a factor with multiple levels: 

> summary(lm(hours ~ rpm * tool, data = abc.lathe) 

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 32.774760   4.496024   7.290 1.57e-07 *** 
rpm         -0.020970   0.005894  -3.558  0.00160 **  
toolB       23.970593   6.568177   3.650  0.00127 **  
toolC        3.803941   7.334477   0.519  0.60876     
rpm:toolB   -0.011944   0.008579  -1.392  0.17664     
rpm:toolC    0.012751   0.008984   1.419  0.16869     
--- 
Residual standard error: 2.88 on 24 degrees of freedom 
Multiple R-squared: 0.8906, Adjusted R-squared: 0.8678  
F-statistic: 39.08 on 5 and 24 DF,  p-value: 9.064e-11 

The interpretation of this summary output now needs to be done with care. 
Individual parameter tests for dummy variable coefficients of categorical predictors 
with more than two levels are not meaningful. Thus, from the above output, we 
cannot conjecture that we can do without a different intercept for tool C, because 
the test for 0 3: 0H β =  is not significant. Moreover, also the coefficients 4β  and 5β  
for the interactions have p-values above 0.05. Does that mean that we can do 
without the interaction? No! 
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We can only either exclude all the interaction terms at once, i.e. test the 
hypothesis  

 0 4 5: 0 0H andβ β= =  against 4 5: 0 / 0AH and orβ β≠ ≠ . 

This is again a partial F-test. Furthermore, we can also ask the question whether 
there is a difference between the regression lines of the three tool types 
altogether. Thus, we also test for the sub-model with only rpm as a predictor: 

 0 2 3 4 5: 0H β β β β= = = =  against 2 3 4 5: , , , 0AH any of β β β β ≠ . 

While many software packages have troubles with this, R is very convenient and 
very quick. We can just do anova(fit.abc) and obtain the following output: 

> anova(fit.abc) 

Analysis of Variance Table 
          Df  Sum Sq Mean Sq F value    Pr(>F)     
rpm        1  139.08  139.08 16.7641  0.000415 *** 
tool       2 1422.47  711.23 85.7321 1.174e-11 *** 
rpm:tool   2   59.69   29.84  3.5974  0.043009 *   
Residuals 24  199.10    8.30                       

What we obtain at the row entitled with tool is the test statistic and the p-value for 
the second null hypothesis from above. It is way below 0.05, we thus have very 
strong evidence that at least the main effect should be kept in the model, i.e. for 
the fact that there is a (vertical) shift in life time for the different tool types. 

Then, the row with title rpm:tool contains the partial F-test according to the first 
null hypothesis from above. It checks whether the interactions can be kicked out of 
the model, i.e. whether all the three tool types have the same slope. This is weakly 
significant, there is thus some mild statistical evidence that there is a difference in 
life time diminishment caused by the speed for tool types A, B and C. 

7.8 Categorical Input as a Substitute for Quantitative Predictors 

Quantitative Predictors can also be represented by indicator variables. In the lathe 
example from above, we could for example categorize the continuous predictor 
rpm into bins ranging from 400-600rpm, 600-800rpm, and 800-1000rpm. 

There does not seem to be an advantage for doing so, and in this example, there 
is in fact none. Also, the disadvantage of this approach is that more parameters 
are required to represent the information of the continuous predictors. Thus, we 
increase the model complexity by this categorization. However, under the 
presence of enough data, this is sometimes desired, because it does not require 
the analyst to make any prior assumptions about the functional form of the 
relationship between the response and the regressor variable.  
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Another advantage of the categorization approach is that it allows dealing with 
missing observations, without having to delete them. If they are numerous in a 
certain predictor, we could just categorize it, and assign all observations with 
missing information in that predictor the label “unknown”. Within the model, we 
would just estimate the effect of unknown status in that predictor. 

Such a categorization of continuous predictors is in some fields quite popular 
among data analysts. The approach is also known as “poor man’s GAM”, an 
expression you can only understand after we discussed the proper GAMs in 
chapter Fehler! Verweisquelle konnte nicht gefunden werden.. 

7.9 More than one Indicator Variable 

Of course it is perfectly valid to have regression models where there is more than 
one categorical input variable. Sometimes even all the predictors can be 
categorical. Models of this last type are called analysis-of-variance models. While 
they can still be treated with the regression methodology we have acquainted so 
far, they are also the subject of more specific ANOVA courses. 
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8 Transformations 

In the previous chapters, we have discussed some extensions to linear modeling 
(e.g. polynomial regression, categorical input), as well as some strategies for 
dealing with violated assumptions (e.g. weighted regression, robust regression).  

Here, we will discuss something that is in between: transformations of either the 
predictors and/or the response broaden the versatility of the linear modeling 
approach. And such transformations often help in cases where the model 
assumptions are violated. 

8.1 Example: Positive Skewness 

We start this section with an example that has several features that are often 
encountered in practice. The dataset shown here is taken from a study conducted 
at ZHAW. The goal was to predict the daily cost in rehabilitation with several 
predictors describing the patient’s current state and his socio-demographic 
background. To keep the example simple and illustrative, we here restrict to one 
single predictor named ADL. This is a score describing how independent a patient 
can conduct the Activities of Daily Life (i.e. dressing, eating, washing, etc.). We 
have data from 469 patients. 
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The scatter plot, including the regression fit and a prediction interval is shown 
above. At first sight, the fit does not seem to be too bad. However, there are some 
problems that do only appear when one looks at the data more closely, and when 
one also inspects the diagnostic plots. 
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1) The Tukey-Anscombe plot shows a smoother which is only slightly off the x-
axis, but the conjecture that the expectation for the errors is different from 
zero is on a solid ground. This is also visible from the scatter plot, although 
much less clearly so. In any case, this is a first model violation. 

2) Then, the Scale-Location plot shows a non-constant error variance. The 
higher the fitted values are, the bigger the variance is. Moreover, the 
residuals show a strong positive skewness, and are certainly not normally 
distributed. All of this is also visible in the scatter plot, but again, much less 
clearly so. In any case, here we have two further model violations. 

3) While there are no influential data points, there is another problem with the 
regression model from above: the prediction interval takes values which are 
below zero. Because the response variable is daily cost, this should not be 
the case. In fact, with our model even the fitted values could be negative, 
While this is not a violation of the model assumptions in a strict sense, it is 
still an strongly undesired property. 
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8.2 Logged Response Model 

We call a situation like in the example above the “positive skewness syndrome”. Is 
there a remedy? The answer is yes: it generally helps if we log-transform the 
response variable, this often improves all our problems simultaneously. However, 
the logged response model also has quite a few implications, on which we will turn 
our attention later. Let us first formulate the model: 

 0 1log( )Y Y xβ β ε′ = = + +  

In the original scale of the response variable, we can write the logged response 
model as: 

 0 1exp( ) exp( )Y xβ β ε= + ⋅ . 
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Note that the errors have the usual additive effect only in the logged response 
model, on the original scale, they are multiplicative. Moreover, because we prefer 
Gaussian distribution for ε , we usually require the errors on the original scale, 
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exp( )ε , having a lognormal distribution. As a next step, we would fit the logged 
response model to the example from above, and do the diagnostics: 

Indeed, the logged response model is much better than the one on the original 
scale. Zero expectation for the errors seems now plausible. The error distribution 
is slightly long-tailed, but symmetric. Also the error variance is more constant now, 
although it seems as if it would even decrease a little with increasing fitted value. 

Note that in practice, we did proceed with this model. Some alternative 
transformations were tried, but no other simple one managed to give an equally 
good overall result with improving the model violations. For dealing with the long-
tailed errors, robust regression was also considered. However, our main focus was 
on prediction (of daily cost) and less on inference: due to the absence of influential 
data points, there were hardly any differences between the robust and the ordinary 
least square regression. 

Dealing with Zero Response 

There are some peculiarities with the logged response model that need further 
attention. First, we can only use the logged response model in cases where the 
response is only positive. However, we often observe positive skewness also in 
problems where the response can and does take the value 0, too. 

Deleting these observations to just run an analysis systematically biases the 
results, and should in any case be avoided! What we can do is to slightly change 
the log-transformation, so that we can deal with the zero responses. One usually 
adds a constant c  – this is perfectly valid. We only need to review the choice of c . 

The most popular choice is 1c = . However, with this choice, the effect of the 
additive shift depends on the scale of the response. A better choice for c , which 
avoids these difficulties, is to set it equal to the smallest positive response value. 

Back Transforming the Fitted Values 

When the response variable has been transformed, the fitted values will be in the 
transformed scale. However, in our example from above, nobody is interested in 
the log of daily cost – thus, it is necessary to convert the predicted values back to 
the original units. 

In principle, this is simply a matter of back transforming the fitted values. For 
example, in the logged response model, we would use  

ˆ ˆexp( )y y′=   

as predictions. This is a valid choice; however, the predicted values are “only” an 
estimate of the median of the response, but not the mean, i.e. they are biased. 

In practical application, unbiased prediction (in the original units) is often a must. 
This is also the case in our daily cost example, where we want the total sum of the 
predicted values to be equal to the actual sum of daily cost observations. For the 
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logged response model, we can compare mean and median of the lognormal 
distribution. This shows how we need to back transform the fitted values in order 
to obtain unbiased predictions: 

 
2ˆˆ ˆexp

2
y y εσ⎛ ⎞

′= +⎜ ⎟
⎝ ⎠

 

Confidence and prediction intervals can be directly converted from one metric to 
the other. Thus, if an interval in the logged response model is given by [ , ]l u , then 
we use [exp( ),exp( )]l u  for the original scale. The reason why this works is because 
interval estimates are percentiles of a distribution and percentiles are not affected 
by monotone transformations. However, there is no assurance that the resulting 
intervals in the original units are the shortest possible intervals. 
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In the scatter plot shown above, we have the regression line and the prediction 
interval that were obtained by back transforming from the logged response model. 
This here seems a lot more reasonable, compared to the scatter plot at the 
beginning of section 8.1. 

Interpretation of the Regression Coefficients 

The regression coefficients will need to be interpreted with respect to the 
transformed scale. There is no straightforward way of back transforming that can 
be interpreted in the original scale. For the logged response model, we have: 



 61 

0 1 1

0 1 1

ˆ ˆ ˆˆlog( ) ...
ˆ ˆ ˆˆ exp( ) exp( )...exp( )

p p

p p

y x x

y x x

β β β

β β β

= + + +

=
 

An increase by one unit in 1x  would multiply the fitted value in the original scale 
with 1̂exp( )β . Thus, when the logged response model is used, the regression 
coefficients can be interpreted in a multiplicative rather than an additive manner. 

8.3 Variance-Stabilizing Transformations 

The logged response model was presented in its own section above because it is 
the most widely used variance stabilizing transformation, i.e. the one that is often 
most appropriate for response variables that can only take positive values. 
However, there are other situations, where different transformations are better. 

In applied regression analysis, the following transformations are known as “first aid 
transformations”. If there are no (practical) reasons strictly speaking against their 
application, one should always use them: 

• Absolute values and concentrations, where 0y ≥ : 
log-transformation: log( )y y′ =  

• Count data, where 0y ≥ : 
square-root transformation: y y′ =  

• Proportions (0 1y≤ ≤ ) 
arcsine transformation: ( )1siny y−′ =  

While it is most important to apply these to the response, it is mostly also 
advisable to transform predictors of these types in exactly the same way. 
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9 Variable Selection 

There is usually a wealth of predictors and potential predictors available to explain 
a target variable of interest. Here, we show how we can select the “best” subset of 
predictors. We first motivate why this is useful, then turn our attention to some 
strategies for finding the subset, and also discuss the meaning of the word “best” 
in terms of regression modeling. 

9.1 Why Variable Selection? 

Only in some rare special cases, we do already know the functional form with 
which a few specified predictors 1,..., px x  explain the response Y  In these cases, 
we would still be interested in learning about the regression coefficients, do some 
hypothesis tests, and potentially give some prediction and confidence intervals. 

Much more often however, we want to use regression in an explorative fashion. 
This is usually when we do not know previously how the relation between 
response Y  and some potential predictors jx  is, usually we do not even know 
which predictors to use. In these situations it has become standard to collect data 
from many potential predictors. Our goal with regression analysis will then be to 
learn not only about the form of the relation between response and predictors, but 
also about required variable transformations, and probably most importantly, about 
the predictors that have a relevant impact on the outcome. 

Thus, there is some motivation for variable selection arising purely from applied 
aspects. However, there is some more reasoning for keeping a model small, lying 
more in technical aspects. 

1) We generally want to explain the data in the simplest way, and thus remove 
redundant predictors. This follows the idea that if there are several plausible 
explanations (i.e. models) for a phenomenon, then the simplest is the best. 

2) Unnecessary predictors in a regression model will add noise to the 
estimation of the coefficients for the other predictors. Or in other words: we 
need more observations to have the same estimation accuracy.  

3) What is stated in 2) above becomes even more pronounced if there is 
collinearity among the predictors, i.e. if there are too many variables trying 
to do the same job. Removing excess predictors facilitates interpretation. 

4) If the model is to be used for prediction, we will be able to save effort, time 
and/or money if we do not have to collect data for predictors that are 
redundant. 

Please note that variable selection is not a method. It is a process that cannot 
even be separated from the rest of the analysis. For example, outliers and 
influential data points will not only change a particular model – they can even have 
an impact on the model we select. Also variable transformations will have an 
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impact on the model that is selected. Some iteration and experimentation is often 
necessary for variable selection, i.e. to find smaller, but better models. 

Example 

We will illustrate the variable selection process on a data coming from the US 
Bureau of Census. They contain information from the 50 US states recorded 
around 1970. The target variable is life expectancy, and there are 7 continuous 
predictors: 

 Population: as of July 1, 1975 

 Income:  per capita income, estimated 1974 

 Illiteracy:  percent of populations, 1970 

 Murder:  number of murders per 100’000 people (1976) 

 HS.Grad:  percent high-school graduates (1970) 

 Frost:  number of days with minimum temperature below freezing 

 Area:  land area in square miles 

These are raw data where some variable transformations are required. 
Population and Area are much skewed predictors. Thus, we apply a log-
transformation on them. Moreover, Murder and Frost are based on counts. This 
is why a square root transformation is appropriate for these. Finally, Illiteracy 
and HS.Grad are proportions, for which we do an arcsine transformation. Income 
is almost symmetrically distributed, and does not need any transformation. 

The model diagnostics (not shown here) look fine when one is using the 
transformed input variables. The summary output is as follows – so now what are 
the driving predictors for life expectancy? 

> summary(lm(Life.Exp ~ ., data = state.trsf) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  6.878e+01  2.806e+00  24.511  < 2e-16 *** 
Population   2.799e-01  1.238e-01   2.261   0.0290 *   
Income      -5.601e-05  2.345e-04  -0.239   0.8124     
Illiteracy  -5.885e-01  7.663e+00  -0.077   0.9392     
Murder      -1.510e+00  2.188e-01  -6.905 1.99e-08 *** 
HS.Grad      5.845e+00  2.458e+00   2.378   0.0220 *   
Frost       -9.968e-02  4.821e-02  -2.067   0.0449 *   
Area         3.361e-02  1.036e-01   0.325   0.7472     
--- 
Residual standard error: 0.7109 on 42 degrees of freedom 
Multiple R-squared: 0.7596,   Adjusted R-squared: 0.7195 
F-statistic: 18.96 on 7 and 42 DF,    p-value: 3.867e-11 
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We learn from the summary that the signs of some of the coefficients match 
plausible explanations concerning how the predictors might affect the response. 
Higher murder rate decreases life expectancy which certainly confirms our a priori 
ideas. Additionally, we observe that there are some weakly significant variables: 
Population, HS.Grad and Frost, and a few which are non-significant: Income, 
Illiteracy, and Area. 

The question is now how we could find out which ones are required in this model, 
and which ones can be omitted. Remember again that is not a valid approach to 
kick all predictors with non-significant p-values out of the model simultaneously. 

9.2 Backward Elimination 

We have seen above that reducing the model by more than one variable at a time 
is problematic. However, we could do some stepwise backward elimination. This 
is the simplest of all variable selection procedures. It can easily be run without any 
special software. On the other hand, it can only be conducted if there is a 
reasonable balance between the number of predictors and the number of 
observations. There is a general rule of the thumb, saying that there should be at 
least 5 times as many observations. 

We start with a model where all potential predictors are included. We then remove 
the predictor with the highest p-values greater than critα . Next, we refit the model 
and again remove the least significant predictor, provided its p-value is greater 
than critα . Sooner or later, all “non-significant” predictors will be removed, and the 
selection process will be complete. One usually uses the arbitrary 0.05critα = , 
although for prediction, often a 0.15  or 0.20  cutoff yields better results. 

In our example, Illiteracy is the least significant predictor with a p-value of 
0.939. We will thus omit it, and fit the model again. From the summary output (not 
shown here), we learn that Income is now the least significant predictor and has 
p-value of 0.804. Thus, income is omitted, and the model gets refitted. Then, Area 
has a p-value of 0.675, and is excluded. Now, the least significant predictor is 
Population. Since it has a p-value as low as 0.012, the backward elimination is 
terminated. 

> summary(lm(Life.Exp ~ Population + Murder + HS.Grad +      
                        Frost, data = state.trsf) 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 68.78767    1.75860  39.115  < 2e-16 *** 
Population   0.27663    0.10600   2.610 0.012259 *   
Murder      -1.49218    0.17046  -8.754 2.83e-11 *** 
HS.Grad      5.83746    1.37130   4.257 0.000104 *** 
Frost       -0.09671    0.03669  -2.636 0.011477 *   
--- 
Residual standard error: 0.6888 on 45 degrees of freedom 
Multiple R-squared: 0.7582,   Adjusted R-squared: 0.7367 
F-statistic: 35.28 on 4 and 45 DF,    p-value: 2.416e-13 
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When comparing this output with the full model from 9.1, we observe that Murder, 
HS.Grad, Frost and Population now have lower p-values than initially. The 
reason is that some of their predictive power was covered by the removed 
variables Area, Income and Illiteracy. This does not come as a surprise, 
because the percentage of high school graduates is certainly correlated with 
illiteracy, and also income.  

Moreover, it is important to understand that the removed variables are still related 
to the response, as a regression of Life.Exp on Area, Income and 
Illiteracy would show. We do not show the output here, and leave this as an 
exercise. 

9.3 Forward Selection 

This is an analogue to the backward elimination. However, forward selection starts 
with an empty model, i.e. a model where only the intercept, but no predictors are 
present. The, we add predictors in a stepwise manner: in every step, we add the 
one which is the most important one, i.e. has the lowest p-value, when added to 
the model. We do so, until no terms with p-values lower than critα , usually set 
equal to 0.05 , can be added to the model. 

This approach is feasible also in situations where there are more predictors than 
there are observations. Since it is also computationally cheap, it was popular in the 
early days of regression analysis. 

9.4 Stepwise Regression 

This is a combination of backward elimination and forward selection, and is what R 
does by default in function step(). It addresses the situation where variables are 
added or removed early in the process and we want to change our mind about 
them later. At each stage of the selection process, a variable may be added or 
removed. As before, we can base our decisions on the p-values from individual 
hypothesis tests. 

9.5 Testing Based Variable Selection 

With the backward, forward and stepwise approaches, the decisions for variable 
selection were based on individual hypothesis tests. While this is computationally 
cheap, it also has some drawbacks: 

1) Because of the “one-at-a-time” nature of adding/dropping predictors, it is 
possible to miss the “best” model. 

2) The p-values should not be treated too literally. We are subject to the 
multiple testing problem. Moreover, the removal of less significant 
predictors tends to increase the significance of the remaining ones. One 
thus often overstates the importance of the remaining predictors. 
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3) The testing based variable selection procedures are not directly linked to 
the final objectives of prediction or explanation. With any variable selection 
method, it is important to keep in mind that model selection cannot be 
divorced from the underlying purpose of the analysis. 

4) The testing based procedures tend to select models that are smaller than 
desirable for prediction purposes. Consider the following simple example to 
understand this: in a simple linear regression, we would go with the 
intercept only if the predictor is not significant. However, for prediction it 
could still be better to use it. 

9.6 Criterion Based Variable Selection: AIC/BIC 

On the other hand, if we have some idea about the purpose for which a model is 
intended, we might propose some measure of how well a given model meets that 
purpose. It would be appealing to scan a big variety of different models. In the 
case where there are a fixed number of m  predictors, we can build 2m  different 
regression models: for each variable we can decide, whether it will be included in 
the model or not.  

Obviously, this all subsets regression approach only works when the number of 
potential predictors is limited, else it will be too time consuming and we need to 
economize on computing time. Also note that we here cannot any longer use the 
p-values from individual hypothesis tests as a criterion, but we need something, 
that judges the quality of the model more generally. The following quantities are 
potential candidates: 

a) Coefficient of determination 2R  

b) Test statistic or p-value of the global F-test 

c) Estimated error variance 2ˆεσ  

For a fixed number of predictors m′ , they will all lead to the same order among all 
possible models. Another property they share is that they somehow judge the 
goodness-of-fit, and thus generally tend to improve if more terms are added to the 
model.  

However, as we can easily imagine, bigger models are not necessarily better than 
smaller ones. It would thus be preferable to employ a criterion which is not only 
based on goodness-of-fit, but also penalizes for the model size. A potential 
candidate is the adjusted 2R . In practice, one nowadays almost exclusively uses 
the Akaike or Bayes Information Criteria (AIC/BIC), which are defined as 
follows: 

 
2max(log ) 2

log( / ) 2
AIC likelihood p

const n RSS n p
= − +
= + +

 

and 
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2max(log ) log

log( / ) log
BIC likelihood p n

const n RSS n p n
= − +
= + +

 

Because the constant ( const ) is the same for a given dataset and any assumed 
error distribution, it can be ignored for regression model comparisons on the same 
data.  

The goal in practice is to find the model which minimizes AIC or BIC. Larger 
models will fit better, and thus have smaller residual sum of squares RSS . 
However, they use more parameter and are thus penalized by the terms 2 p  (AIC) 
and logp n  (BIC). Note that BIC punishes larger models more heavily and so will 
tend to prefer smaller models in comparison to AIC. 

Finally, we note here that the use of AIC/BIC is not limited to all subset regression. 
These criteria can also be applied in the backward, forward or stepwise 
approaches. In R, variable selection is generally performed by function step(), 
which by default employs the stepwise approach with AIC as a criterion. We 
illustrate this with the state data: 

Example 

> step(lm(Life.Exp ~ ., data=state.trsf)) 
Start:  AIC=-26.84 
Life.Exp ~ Population + Income + Illiteracy + Murder + 
           HS.Grad + Frost + Area 
 
             Df Sum of Sq    RSS      AIC 
- Illiteracy  1    0.0030 21.231 -28.8291 
- Income      1    0.0288 21.256 -28.7682 
- Area        1    0.0532 21.281 -28.7109 
<none>                    21.228 -26.8361 
- Frost       1    2.1603 23.388 -23.9903 
- Population  1    2.5844 23.812 -23.0918 
- HS.Grad     1    2.8591 24.087 -22.5183 
- Murder      1   24.0982 45.326   9.0927 
 
[Output partly omitted...] 
 
Step:  AIC=-32.55 
Life.Exp ~ Population + Murder + HS.Grad + Frost 
 
             Df Sum of Sq    RSS     AIC 
<none>                    21.347 -32.555 
- Population  1     3.231 24.578 -27.508 
- Frost       1     3.296 24.643 -27.376 
- HS.Grad     1     8.596 29.944 -17.635 
- Murder      1    36.352 57.699  15.161 

When we did a backward elimination based on the AIC criterion, the sequence of 
predictor removal was exactly the same as when our decision was based on 
hypothesis testing. The process also stops at the same spot, and the resulting 



 68 

model is exactly equal to the one we found before. Please note that this is a 
coincidence – one generally does observe differences when using different 
variable selection schemes. 

A final remark on variable selection: every procedure may yield a different “best” 
model. However, if we could obtain another sample from the same population, 
even a fixed procedure might result in another “best” model. Thus, there is an 
element of chance in this declaration. How can we mitigate this in practice? It is 
usually advisable to not only consider the “best” model according to a particular 
procedure, but to check a few more models that did nearly as good, if they exist. 

9.7 Correct Treatment of Hierarchical Models and Categorical Predictors 

Some regression models have a natural hierarchy. For example in polynomial 
models, 2x  is a higher order term than x . When selecting variables, it is important 
to respect this hierarchy. Lower order terms should not be removed from the 
model before higher order terms in the same variable. As an example, consider 
the polynomial model: 

 2
0 1 2Y x xβ β β ε= + + +  

Suppose we fit this model and find that the regression summary shows that the 
term in x  is not significant, but the term 2x  is. If we then remove the x  term, our 
reduced model would become 

 2
0 2Y xβ β ε= + +  

However, suppose we make a scale change x x a+ . Then, the above reduced 
model would look different again: 

 2 2
0 2 2 22Y a ax xβ β β β ε= + + + + . 

Thus, the first order term x  has reappeared. Scale changes should not make any 
important change to any reasonable model, but in this case an additional term has 
been added. This is not desirable and illustrates why we should not remove lower 
order terms in the presence of higher order terms: because we do not want 
interpretation to depend on the choice of scale. 

Models with Interactions 

For models with interactions, it does not result in a valid model if a main effect is 
removed, but the interaction is kept within the model. The reasons are similar as 
with the polynomial models above. We leave it as an exercise to study the effects 
of removing a main effect, but keeping the interaction. 

Categorical Input 

When there are categorical predictors, we need dummy variables to incorporate 
them into the model. Now if a single dummy coefficient is non-significant, we 
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cannot just kick this term out of the model! Thus, we have to test the entire block 
of indicator variables. When we work manually and testing based, this will be done 
with a partial F-test, whose p-value can be compared against the ones from the 
other variables (even if they may arise from individual hypothesis tests). 

When we use a criterion based approach with function step(), then R deals 
correctly with categorical predictors, and also with interactions and hierarchical 
models. Be careful with other software though – not all statistics packages can 
correctly handle variable selection with such input. 

9.8 The Lasso 

The result of a variable selection procedure is a subset of predictors that will be 
included into the model. As stated above, this is a random set. If the data were 
only slightly changed, or if we obtained another sample from the same population, 
that set might be completely different. Some predictors jx  might no longer be part 
of the model; respectively their regression coefficient jβ  is suddenly equal to zero. 
This is a non-continuous behavior that introduces some arbitrariness. However, 
there is a procedure where variable selection is done in a steadier, smoother way: 
the Lasso, a penalized regression approach. 

The idea behind is to complement the ordinary least squares criterion for model 
fitting with a penalty term for the magnitude of the coefficients. Thus, we minimize 

 2( , ) | |i ji i
Q rβ λ λ β= +∑ ∑  

The procedure has one tuning parameter λ  which balances goodness-of-fit 
against the penalty term. As an alternative formulation, minimization of Q  can also 
be seen as minimizing the sum of squared residuals under the condition that the 
sum of absolute values of the regression coefficients is c≤ .  

When c  is sufficiently large, then the least square estimates ˆ
jβ  will fulfill the 

condition ˆ| |ji
cβ ≤∑ , and the solution is the same. However, if we choose smaller 

c , the regression coefficients will be smaller in magnitude, i.e. they are shrunken 
towards zero. In order to make good choices for c , it is better to use 

 ˆ/ | |jj
b c β= ∑  

as a parameter, since this is scale-free and always between 0 and 1. It has been 
shown mathematically and empirically, that the condition leads to the property that 
soon the first coefficient will be equal to 0, where it will stay with diminishing c . But 
not only this: the more we lower c , the more coefficients vanish. We obtain a 
variable selection procedure that resembles the backward elimination approach, 
though it is based on entirely different criteria. 
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When the Lasso is applied to the State dataset, we obtain the same result as with 
the backward elimination approach. The first three variables which are excluded 
are again Illiteracy, Income and Area.  
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10 Missing Data 

It is not uncommon in practice that some data points are missing. This causes 
some problems when doing regression analysis and thus, we need to deal with the 
missing data. Obviously, finding the missing data points would be the best 
strategy. If this is a viable option, we strongly recommend doing so.  

However, often this will be impractical and we need some alternatives. The first 
and foremost question you should ask yourself is why the data are missing. This 
could be: 

a) Just randomly, non-informatively for the goal in your analysis. Then fixing 
up the missing data is comparatively easy. 

b) Systematically with respect to the goal of the analysis. For example, 
patients who dropped out of a drug study because they believed their 
treatment was not working. Or, a chemical reaction in a certain 
configuration which just took too long to complete, etc. 

Unfortunately, there are no easy solutions for case b), where the findings of the 
study will be ultimately biased by the missing values. This teaches us that we 
should avoid this type of missing at any cost. Case a) is somewhat less 
problematic. We here provide several simple fix-up alternatives for it: 

1) When there are plenty of data, the simplest solution is to just omit the 
incomplete cases. This is a reasonable and valid strategy if only a relatively 
small number of observations are lost. 

2) We could fill in or impute the missing values, i.e. use the rest of the data to 
predict the missing data point. The easiest method would be to just replace 
a missing value in a predictor with the average value of that predictor. 

3) A more sophisticated filling-in strategy would be to use regression on the 
other predictors with complete data on the one where the data point is 
missing. 

4) Maximum likelihood methods can be used assuming multivariate normality 
of the data. The EM algorithm is often used here. We will not elaborate on 
this here, but the basic idea is to treat missing values as nuisance 
parameters. 

Example 

We will randomly delete some five observations from the above state dataset to 
show and study the effects of fixing alternatives 1)-3). We still use Life.Exp as 
the response variable, and use Murder (2 NA introduced), Frost (3 NA 
introduced), HS.Grad and Population as predictors. If we try to fit a regression 
models with that modified dataset, we obtain: 
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> summary(lm(Life.Exp ~ Population + Murder + HS.Grad + 
                        Frost, data=state.trsf) 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 68.43923    1.91211  35.793  < 2e-16 *** 
Population   0.31831    0.11248   2.830 0.007247 **  
Murder      -1.43049    0.17821  -8.027 7.26e-10 *** 
HS.Grad      5.75964    1.45363   3.962 0.000298 *** 
Frost       -0.10537    0.03838  -2.746 0.009006 **  
--- 
Residual standard error: 0.6824 on 40 degrees of freedom 
  (5 observations deleted due to missingness) 
Multiple R-squared: 0.7515, Adjusted R-squared: 0.7266  
F-statistic: 30.24 on 4 and 40 DF,  p-value: 1.293e-11 

R automagically removes all cases where at least one of the values, be it in the 
response or one of the predictors, and runs the regression analysis without 
complaining. It is only visible in the remark of the summary output and with the 
reduced number of degrees of freedom that some observations were deleted.  

So this was alternative 1). When we compare, we see that there are some slight 
changes in all the numerical values in the summary output, but nothing that seems 
of tremendous importance. Thus, we can say that 1) would probably be safe here, 
but note that we in practice cannot usually compare against the fit without any 
missings. Next, we decide to apply 2), and replace the 3 missing data points in 
Frost with the mean of that predictor. 

> missings   <- which(is.na(state.trsf$Frost)) 
> mean.Frost <- mean(state.trsf$Frost, na.rm=TRUE)  
> state.trsf$Frost[missings] <- mean.Frost 

The replacement value is 9.85, when the removed ones were 0, 10.68 and 13.19 
for the states of Hawaii, Kansas and New Hampshire. Especially for Hawaii, the 
value we replace with seem questionable. In general, we would thus only apply 
strategy 2) in problems where there are many predictors and in only few, data are 
missing – then it may be beneficial to profit from the information which is present in 
the other predictors, and not delete the entire case. We study the output: 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 66.80292    1.98216  33.702  < 2e-16 *** 
Population   0.36425    0.12058   3.021 0.004233 **  
Murder      -1.34124    0.18860  -7.112 8.87e-09 *** 
Frost       -0.03007    0.04800  -0.626 0.534333     
HS.Grad      6.15488    1.50475   4.090 0.000185 *** 
--- 
Residual standard error: 0.7298 on 43 degrees of freedom 
  (2 observations deleted due to missingness) 
Multiple R-squared: 0.7288, Adjusted R-squared: 0.7036  
F-statistic: 28.89 on 4 and 43 DF,  p-value: 1.092e-11 
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Now, there are only 2 observations missing, i.e. the ones with NA values in Murder. 
However, our imputation with the mean had quite a big effect on the summary. 
Predictor Frost is no longer significant, and the coefficient decreased, too. It 
seems as if we would do better with strategy 1) than strategy 2) here. So now, we 
try alternative 3), and predict the missing observations in Frost from a regression 
of Frost on the remaining predictors Population, Murder and HS.Grad: 

missing <- which(is.na(state.trsf$Frost)) 
fit.imp <- lm(Frost~Population+Murder+HS.Grad, state.trsf) 
predval <- predict(fit.imp, newdata=state.trsf[missing,]) 
state.trsf$Frost[missing] <- pred.val 

It is clear that strategy 3) is of no benefit with orthogonal predictors and the more 
collinearity there is, the better it works. In our case, it seems at least doubtful 
beforehand if it is possible to predict the number of freezing days from population, 
percentage of high school graduates and murder rate. Indeed, we have: 

> pred.val 
      HI       KS       NH  
11.43693 11.00075 12.27640 

For the state of Hawaii, we now impute an even bigger number of freezing days, 
while the deleted, true value was 0. The impact on the fit is similar as it was with 
strategy 2). 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 66.57107    2.00466  33.208  < 2e-16 *** 
Population   0.37502    0.12243   3.063 0.003771 **  
Murder      -1.32308    0.19082  -6.934 1.60e-08 *** 
Frost       -0.01595    0.04908  -0.325 0.746796     
HS.Grad      6.10990    1.51291   4.039 0.000218 *** 
--- 
Residual standard error: 0.7322 on 43 degrees of freedom 
  (2 observations deleted due to missingness) 
Multiple R-squared: 0.727, Adjusted R-squared: 0.7016  
F-statistic: 28.62 on 4 and 43 DF,  p-value: 1.256e-11 

Also 3) does not yield any benefit over 1) for the imputation for Frost. Thus, we 
would proceed with 1) here and definitely leave the states with missing values out 
of the analysis. Moreover, we here state that things are similar with variable 
Murder, but leave producing the results as an exercise. 

Synopsis 

We conclude that it is not so simple regenerate and impute missing information. 
While there are cases where the mean or regression fill-in methods do provide an 
advantage, they are often useless or even make things worse. The success of the 
latter depends on the collinearity of the predictors – the imputed values will be 
more accurate the more collinear the predictors are. Also note that both fill-in 
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techniques will introduce a bias towards zero in the regression coefficients while 
tending to reduce the variance.  

For situations, where a substantial proportion of the data is missing, strategies 1-3) 
usually do not work well. We recommend using more sophisticated approaches 
then, which are beyond the scope of this course. 

11 Modeling Strategies 

By now, we have learnt quite a bit of techniques for regression analysis, i.e. 
estimation, diagnostics, transformations and variable selection). What has been 
left dubious is in which order to apply these, and what is generally a good strategy 
to proceed. 

There is no definite answer to this: regression analysis is the search for structure 
in the data and there are no hard-and-fast rules about how it should be done. 
Professional regression analysis can be seen as an art and definitely requires skill 
an expertise – one must be alert to unexpected structure in the data. 

Thus far, no one has implemented a computer program for automagically 
conducting a complete regression analysis. Because of the difficulties in 
automating the assessment of regression graphics in an intelligent manner, we 
cannot expect that this will be accomplished soon. The human analyst is capable 
of assessing plots in the light of contextual information, and that is his/her big 
advantage. 

11.1 Guideline for Regression Analysis 

We here try to give some rough guidelines on the process of a regression analysis 
which is aimed at finding a model which accurately describes the data and does 
not show any systematic shortcomings. 

0) Getting acquainted with the data and preprocessing 

This includes learning to know the meaning of all variables in the dataset. It 
is usually very helpful to use short, but informative names. The data are 
checked for impossible or highly unlikely values, gross errors and outliers. If 
possible, these are corrected, in all other cases their values should be set to 
NA. Finally, we investigate the frequency of missing values, and whether 
they appear in systematic patterns. If yes, we should be very careful when 
drawing conclusions from our analysis results. 

1) First-aid transformations 

Some general statistical considerations as well as specific knowledge lead 
to transformations to bring all variables on a plausible scale – often a 
transformed one. If there are no specific reasons against, the first-aid 
transformations from 8.3 should always be applied. 
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2) Fitting a big model 

The first model we try to fit is a big one which potentially contains too many 
predictors. In particular, we use: 

• all predictors, if their number does not exceed / 5n . 

• if there are more than / 5n  predictors, we may try to only include the 
ones for which we previously expect/know that they have some 
impact on the response. 

• if b) still leads to a model with more than / 5n  predictors, we would 
do some forward search with a non-restrictive p-value (e.g. 0.2) as a 
criterion. 

If we have previous knowledge that lets us assume that there are 
interactions between the predictors, we would include these, too. 

3) Model diagnostics 

We would do the diagnostic plots to check for normality and outliers in the 
residuals, for checking constant variance and uncorrelated errors. If we see 
some anomalies, then these are some strategies which may mitigate the 
problems, or even fully correct them: 

• in many cases, and for dealing with all of the problems from above, 
we can do a transformation of the response variable 

• when all the other diagnostics look appealing but only the residuals 
are long-tailed (and symmetric), using robust regression is more 
efficient, i.e.. leads to more precise estimates. 

• if we have previous knowledge that the variance is unequal (e.g. 
when the response is a mean), or if we just observe non-constant 
variance and cannot get rid of it by a transformation, we would 
choose to do weighted regression 

• for correlated errors, we could try block building according to time or 
location of measurement and include this as a nominal predictor in 
the model. If this fails, we could use the generalized least squares 
approach to produce estimates that account for the error correlation 

4) Non-linearities 

We can plot residuals or partial residuals against the predictors. If some of 
these relations appear to be non-linear, we could try transformations, i.e. a 
different one than before, or add terms of higher order to the model. 
Another alternative would be to use more sophisticated techniques (Splines, 
GAM, …). 
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5) Variable selection 

Preferably, we would now run an all subsets variable selection with either 
AIC or BIC as a criterion. This is only a viable option if there are not too 
many (say about 10) predictors. In other cases, we would work with a 
backward elimination, or better, a stepwise backward elimination scheme 
(e.g. the one implemented in R-function step()). 

There are cases where it can be useful to do scatter plots of the residuals 
versus the eliminated predictors. Sometimes, this leads to insight about 
possible transformation – often though, when time is limited, one does 
without this. 

6) Interactions 

We can try whether (two-way) interactions terms between the predictors 
that remained in the model leads to a significant improve in goodness-of-fit. 
Interactions with predictors that are not in the current model are unwanted 
and rarely useful. If we decide to use one of these, the (non-significant) 
predictor should also be re-introduced into the model as a main effect. 

7) Influential data points 

We are now looking for data points which strongly attract the regression fit, 
i.e. influential data points, which can also be seen as multivariate outliers. If 
they exist, they often require deeper insight for deciding whether to consider 
or remove them. Comparing results with and without them can help, too. 

8) Do model and coefficients make sense? 

If there are predictors which are highly implausible, or if an estimated 
coefficient has the wrong sign, contrary to what we would expect from gut 
feeling or to what existing theory says, we would remove the predictors 
from the model, if there are no drastic changes to the fit. 

If steps 4-8) substantially altered the model, then we should go back to 3) and 
repeat the diagnostics. It can also be helpful to perform 4-8) again. 

This was a general strategy for analyses that were aimed at obtaining a good 
descriptive model. When the goal is testing a hypothesis, we would proceed 
similarly. However, we have to be careful with variable transformations, variable 
selection and collinearity. Often, the question dictates what can be done, and what 
cannot be done. 

On the other hand, if the goal with a regression analysis is prediction, then 
proceeding according to the above guideline is still a good idea, though we can be 
a little more relaxed. We would usually not be too picky when doing variable 
selection, and also minor model violations would be tolerable, as long as the 
forecast is good. It may be advisable to check the generalization abilities of 
several competing models with out-of-sample data or cross validation, 
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11.2 Significance vs. Relevance 

Statistical significance is not equivalent to practical significance. The larger the 
sample, the smaller your p-values for the same effect will be, so do not confuse p-
values with an important predictor effect. With large datasets, one routinely 
produces statistically significant results even when the actual effects are practically 
unimportant. Would we for example really care that the test scores were 0.1% 
higher in one state than another, or that some medication reduced pain by 2%?  

Because a model is usually only an approximation of the underlying reality, the 
exact meaning of the parameters is debatable at the very least. As a 
consequence, the precision of the statement such as 1 0β =  is completely at odds 
with the approximate nature of the model. Moreover, it is highly unlikely that a 
predictor that one has taken the trouble to measure and analyze has exactly zero 
effect on the response. It may often be small, but it will not be zero. 

This means in many cases, we know the point null hypothesis is false without even 
looking at the data. Furthermore, we know that the more data we have, the greater 
the power of our tests. Even small differences from zero will be detected with a 
large sample. Now if we fail to reject the null hypothesis, we might simply conclude 
that we did not have enough data to get a significant result. According to this view, 
the hypothesis test just becomes a test of sample size. 
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12 Extending the Linear Model 

Linear models are central to the practice of statistics and can be seen as part of 
the core knowledge of any applied statistician. While they are very versatile, there 
are situations that cannot be handled within the standard framework. Here, we will 
take care of some of these. 

12.1 What is the difference? 

So far, the response Y  was a continuous random variable whose range was (at 
least theoretically) reaching from minus to plus infinity. There are situations where 
this is clearly not the case – i.e. always, when we want to model and predict a 
response that is for example binary in { }0,1 , or a proportion in [0,1] .  

Then, applying the standard multiple regression framework will ultimately result in 
responses that are beyond the set of values which are foreseen in that problem. 
Thus, we need some additional techniques which can deal with these types of 
situations. 

12.2 An Overview of the Framework 

Depending on how exactly the response variable is, there are several different 
approaches. Here, we will give an overview of the most important ones. 

Logistic Regression 

In toxicological studies, one tries to infer whether a lab mouse survives when it is 
give a poisonous dose of a particular concentration. In human medicine, we are 
often interested in the contrary case: how much “dose” has an effect, i.e. clearly 
reduces pain or other symptoms. Here, the response variable is a binary variable 
in { }0,1 . Our goal will be to study the outcome depending on one or several 
predictors. 

A statistical model for this situation takes into account that for a given 
(intermediate) concentration, we will only have an effect on some of the subjects, 
but not on all of them. We are thus trying to model the relation between ( 1)iP Y =  
and a number of predictors. Obviously, the simplest approach is 

 0 1 1( 1) ...i i ipP Y x xβ β β= = + + + . 

However, this can lead to probabilities beyond the interval of [0,1] . To avoid this, 
we could transform the response variable to a scale that ranges from minus to plus 
infinity. The usual choice is the so-called logit transformation ln( / (1 ))p p p− . 
What we obtain is the logistic regression model: 

 0 1 1
( 1)log ...

1 ( 1)
i

i ip
i

P Y x x
P Y

β β β
⎛ ⎞=

= + + +⎜ ⎟− =⎝ ⎠
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Poisson Regression 

What are predictors for the locations of starfish? For answering this question, we 
could analyze several areas for which some properties are known. The response 

iY  is a count – the simplest model in this case is that it has a Poisson distribution. 
We then assume that the logged parameter iλ  at location i  depends in a linear 
way on the covariates: 

 ~ ( )i iY Pois λ  where 0 1 1log( ) ...i i p ipx xλ β β β= + + + . 

Log-linear Models 

Another extension of the linear model is necessary for the case where we try to 
predict a nominal response variable. For example, we may be interested in giving 
probabilities for the favorite party of a person, depending on predictors such as 
education, age, etc. Such data can be summarized and displayed with 
contingency tables.  

Generalized Linear Models 

Log-linear models, logistic and Poisson regression all fit within the framework of 
generalized linear models (GLMs). They are based on the notion that the suitable 
transformed expected value of the response Y  has a monotone relation to a linear 
combination of the predictors, i.e.: 

 0 1 1( [ ]) ...i i p ipg E Y x xβ β β= + + + . 

Additionally, we require that the variance of the response Y  is of the form 
( [ ])v E Yφ ⋅ , where φ  is an additional parameter, and ( )v ⋅  a specific function. 

Moreover, there are some restrictions on the density of Y , given the predictors x .  

While this may seem awfully complicated, it can be shown that these conditions 
are fulfilled in many practically relevant situations. In particular, not only the 
extension to the linear model discussed above fall within this class of models, but 
also the multiple linear regression model with Gaussian errors. 

Thus, this is what it is: a more general formulation of linear modeling. There are a 
number of theoretical results characterizing the properties of such models, which 
led to some general basic principles for estimation, inference, model diagnostics 
and variable selection. 

However, we will here do without much discussion of this general framework and 
the corresponding results. We limit ourselves to the discussion of the specific 
cases sketched above. For readers who are interested in pursuing the theory on 
GLMs, we refer to the seminal work “Generalized Linear Models” by McCullagh 
and Nelder (Chapman and Hall, 1989). 
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13 Binary Logistic Regression 

We have explained above why binary response variables do not fit within the 
framework of multiple linear regression. Here, we will discuss the necessary 
extension. We will see that some of the previously pursued ideas will reappear, 
while some novel, other issues arise here. Our discussion includes: 

• Formulation of the model 

• Estimation 

• Inference 

• Model diagnostics 

• Model choice 

13.1 Example 

In this section, we will discuss an example dealing with survival after premature 
birth. A study of Hubbard (1986) contains data of 247 early born babies. Predictors 
for their survival are birth weight (in grams), birth age (in weeks of pregnancy), the 
apgar scores (judging the vital functions one and five minutes after birth) and the 
pH-value of the babies’ blood (providing further information on how well the baby 
breathes). 
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In the plot above, we display age versus the log10-transformed birth weight. 
Surviving babies are coded with red dots, while the ones that died are plotted by 
black triangles. It is apparent that the proportion of surviving babies depends on 
age and weight: the older and heavier a baby is born prematurely, the better the 
odds for surviving are. The goal with our logistic regression analysis will be the 
quantitatively model the odds for survival regarding the influence of the predictors. 

13.2 Logistic Regression Model 

In the premature birth example, the response variable iY  is binary, taking values 0 
(death) and 1 (survival). Thus, iY  has a Bernoulli distribution, i.e. every iY  has a 
different Bernoulli distribution and we denote the respective parameters, the 
success rates, by ip . It is very important to note that  

 1 1( 1| ,..., ) [ | ,..., ]i i p i pp P Y x x E Y x x= = = , 

i.e. the parameter can also be seen as the conditional probability for survival given 
the predictors, or equally, as the expected value of the response variable iY , again 
given the predictors. As we have already concluded above, the simplest approach 
for linear modeling would be: 

 0 1 1 ...i i ipp x xβ β β= + + + . 

This is inappropriate here, because while the fitted values are probabilities, they 
can exceed the interval [0,1] . We can try to solve the problem by transforming the 
response to a real-valued scale. The most commonly used transformation which 
maps from [0,1]  to ( , )−∞ +∞  is the logit function: 

 ( ) log
1

i
i

i

pg p
p

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 

Its interpretation is as follows: probabilities are mapped to logged odds. Because 
these logged-odds are real-valued, they can be modeled using the desired linear 
combination of predictors. This is the logistic regression model: 

 0 1 1log ...
1

i
i ip

i

p x x
p

β β β
⎛ ⎞

= + + +⎜ ⎟−⎝ ⎠
 

Note that there is no error term iε . Why don’t we need it here? Well, the left hand 
side of the equation is (a transformation of) a probability, which already accounts 
for the uncertainty in the response. Hence, the uncertainty in a babies’ survival for 
a given combination of birth age and weight is already dealt with. 

For estimating this model, we require the iY  to be independent. For the predictors, 
however, there are no restrictions: they can be categorical (factors), higher-order 
polynomial terms or other transformations of the original predictors. Also 
interactions among predictors are allowed. 
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We introduce some additional notation. The right-hand side of the above equation 
is also called linear predictor, denoted by iη : 

 0 1 1 ...i i p ipx xη β β β= + + + . 

The function ( )g ⋅  that maps ip , or better, the expected values [ ]iE Y  to the values 
of the linear predictor is called the link function. The logit function is the default 
choice with logistic regression, but there are other options. They only need to map  

 [0,1] ( , )−∞ +∞  

Another choice of such a function with some practical relevance is the inverse of 
the Gaussian cumulative distribution function. This is known as the probit link 
function. 
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Example 

We fit the logistic regression model to the premature birth example. The result is: 

> glm(survival ~ l10weight+age, data=baby, family="binomial") 
 
Coefficients: 
     (Intercept)  I(log10(weight))               age   
        -33.9711           10.1685            0.1474   

What is the interpretation of this output? By applying the inverse logit function, we 
obtain a probability of survival for every point in the above scatter plot: 

 [ ] ( )1
10 101| log ( ), 33.97 10.17 log ( ) 0.14P Y weight age g weight age−= = − + ⋅ + ⋅  
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As we had expected before, this probability is the small in the lower left, and high 
in the top right corner. Note that even when we extrapolate beyond the range of x -
values that are present for fitting, we would still obtain fitted values in [0,1] .  

While displaying the result from the fit in the 2-dimensional scatter plot would 
require shading the area in the plot according to the fitted probability, things are 
much simpler if we plot the response (survival) versus the linear predictor η , see 
above. If we need to come up with a prediction for survival given a particular 
predictor configuration, we would forecast survival when ˆ 0.5ip ≥ . 

13.3 Estimation and Interpretation of Coefficients 

While in multiple linear regression, estimation of the coefficients was based on 
minimizing the sum of squared residuals, this concept is not that straightforward to 
extend with logistic regression. We use a different approach here: maximum 
likelihood estimation (MLE), i.e. the regression coefficients jβ  are determined 
such that the log-likelihood function is maximized. 

 ( )
1

ˆ ˆ( ) log( ) (1 ) log(1 )
n

i i i i
i

l y p y pβ
=

= + − −∑  

The log-likelihood is a function of the regression parameter vector β , although 
they are not apparent on the right hand side of the definition. However, they are 
there, hidden within the fitted values ˆ ip . MLE requires maximizing ( )l β  which is 
done by taking partial derivatives. 

This leads to a non-linear equation system that is usually solved by an iterative 
approach. It is based on formulating a linear approximation in every step, which is 
then solved using weighted linear regression. When the changes in the fitted 
values are small enough, the process stops and the solution is found. 

MLE may seem a totally different concept to the one we employed in multiple 
linear regression. However, this is not the case: for normally distributed errors, the 
least squares estimator coincides with the maximum likelihood estimator – which 
again neatly demonstrates, how both logistic and multiple linear regression fit 
within the framework of GLMs, where parameter estimation is always done using 
MLE. 

Example 

We now turn our attention to the interpretation of the coefficients jβ . As we had 
stated above, the log-odds for 1iY =  are a linear function of the predictors. Thus, if 
predictor jx  is increased by 1 unit, then the log-odds in favor of 1Y =  increase by 

jβ  if all other predictors remain unchanged. We illustrate this with the premature 
birth example, where we consider an individual with 10log ( ) 3weight =  and birth 
ages of 30 weeks. We have: 

 33.97 10.17 3.0 0.14 30 0.957η = − + ⋅ + ⋅ = , 



 84 

which are the log-odds for survival. If we take exp(0.957) 2.604= , we obtain the 
odds for survival. It is thus 2.604 times more likely to survive than die when born at 
this particular combination of age and weight. On the other hand, the probability 
for survival is: 

 1 exp( ) exp(0.957)( ) 0.723
1 exp( ) 1 exp(0.957)

g ηη
η

− = = =
+ +

 

Now, if we compare to an individual with birth age 31 weeks (and the rest 
remaining as above), we obtain the odds as exp(1.104) 3.017= . If we divide the two 
odds, we obtain the odds-ratio: 

 2
3.017 ˆ1.159 exp( )
2.604

β= =  

The odds for surviving increase by 2
ˆexp( )β  (i.e. about 15%) when a baby of the 

same weight is born one week later – this is a more illustrative way to see the 
parameter 2β̂ . 

13.4 Inference 

If we look at the summary output of a logistic regression model, things are similar, 
but not equal, as before: 

> summary(fit) 
 
Call: 
glm(formula = survival ~ I(log10(weight)) + age,  
    family  = "binomial", data = baby) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.2983  -0.7451   0.4303   0.7557   1.8459   
 
Coefficients: 
                  Estimate Std. Error z value Pr(>|z|)     
(Intercept)      -33.97108    4.98983  -6.808 9.89e-12 *** 
I(log10(weight))  10.16846    1.88160   5.404 6.51e-08 *** 
age                0.14742    0.07427   1.985   0.0472 *   
--- 
(Dispersion parameter for binomial family taken to be 1) 
    Null deviance: 319.28  on 246  degrees of freedom 
Residual deviance: 235.94  on 244  degrees of freedom 
AIC: 241.94 
 
Number of Fisher Scoring iterations: 4 

Besides the different call, an important difference is that we now have deviance 
residuals instead of the plain ones as before. There is no more “residual standard 
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error”, but only some deviance measures. Also the global F-test is missing. We will 
explain these differences in the following section 13.5. 

What might seem like a minor detail, i.e. the fact that we now have a z- instead of 
a t-value, also has some implications. In multiple linear regression, given Gaussian 
errors, it is quite easy to show that the estimated regression coefficients ˆ

jβ  are 
normally distributed. This is no longer true for logistic regression. However, one 
can show that ˆ

jβ  is at least approximately Gaussian with covariance matrix V . 
Thus, we are using 

 
ˆ

ˆ
j j

jj

Z
V

β β−
=  

as a test statistic. Because the covariance matrix can be derived directly from the 
coefficients and no error variance 2ˆεσ  is involved, we can replace the former 
Student distribution by the Gaussian. Hence, we have the z-value here. 

13.5 Goodness-of-Fit 

In multiple linear regression, we can use the sum of squared residuals as a 
goodness-of-fit measure. This is replaced by the so-called residual deviance in 
logistic regression. This is twice the difference between the log-likelihood for the 
saturated model, and the maximum of the log-likelihood for our current model. 
Since for the non-grouped binary data we have here, the log-likelihood for the 
saturated model is zero, we obtain: 

 ( )
1

ˆ ˆ ˆ( , ) 2 log( ) (1 ) log(1 )
n

i i i i
i

D y p y p y p
=

= − + − −∑ , 

which is ˆ2 ( )l β− , minus twice the log-likelihood of our model. The deviance is 
especially useful for comparing nested models. If we have two models, where the 
smaller one ( , )S with q parameters  is comprised within the bigger one 
( , )B with p parameters , we can use the likelihood ratio test to check whether the 
bigger one yields an improvement. Null hypothesis and test statistic are: 

 0 1 2: ... 0q q pH β β β+ += = = =  

 ( ) ( ) ( )( ) ( ) ( ) ( )ˆ ˆ2 , ,B S S Bl l D y p D y p− = − , 

where ( )Bl  and ( )Sl  are the values of the log-likelihood function from the big and 
small models. The likelihood ratio test amounts to computing the difference in 
deviance which has an approximate chi-square distribution. The number of 
degrees of freedom corresponds to the difference in the number of parameters 
between the two models, i.e. 

 ( ) ( ) 2~S B
p qD D χ −−  
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The above test is already implemented in the R-function drop1() for excluding 
predictors from a given model. We will try this and check the results on the 
premature birth dataset: 

> drop1(fit, test="Chisq") 
Single term deletions 
 
Model: 
survival ~ I(log10(weight)) + age 
                 Df Deviance    AIC    LRT   Pr(Chi)     
<none>                235.94 241.94                      
I(log10(weight))  1   270.19 274.19 34.247 4.855e-09 *** 
age               1   239.89 243.89  3.948   0.04694 *   

The decision is to keep both predictors in the model. Note that for continuous or 
binary predictors, the above output tests the same null hypothesis as the summary 
output. However, the test statistics are not equal: in some cases, the standard 
errors for the ˆ

jβ  can be overestimated and so the z -value is too small, and the 
significance of an effect could be missed. This is known as the Hauck-Donner 
effect, and it is the reason why the deviance based test outlined here is preferred. 

The above output also provides some further information in column AIC. The 
definition of the criterion is: 

 ˆ( , ) 2 (# )AIC D y p of parameters= + ⋅ , 

i.e. the deviance penalized by twice the number of predictors used. This can 
conveniently be used as a means for comparing models of different size. Also for 
logistic regression, its application is popular especially when doing variable 
selection with stepwise procedures. 

Null Deviance 

The smallest model that we consider is the one where there are no predictors, but 
only an intercept. The fitted values will all be equal to (0)p̂ . Our best fit ( )F  and the 
smallest model (0)  are nested, thus we can perform a deviance test: 

 ( ) ( ) ( )(0) ( ) ( ) (0)ˆ ˆ2 , ,F Fl l D y p D y p− = − . 

The summary output in 13.4 tells us that: 

    Null deviance: 319.28  on 246  degrees of freedom 
Residual deviance: 235.94  on 244  degrees of freedom 

The deviance difference is 83.34. Using the 2χ -distribution with 2 degrees of 
freedom (i.e. the difference among the two models), we obtain a very small p-
value that is close to 0. The two predictors thus have are highly significant for 
predicting survival in premature birth. 
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13.6 Model Diagnostics 

Model checking is just as important in logistic regression as it is in linear modeling. 
Although there is no error term in logistic regression, we will base the diagnostics 
again between the observed and fitted values. Unlike the case of linear models, 
we now have to make allowance for the fact that these differences have different 
variances. There are two types of residuals in common use: 

Pearson Residuals 

A very simple approach to the calculation of residuals is to take the difference 
between observed and fitted value and divide by an estimate of the standard 
deviation. The resulting residual has the form 

 
ˆ

ˆ ˆ(1 )
i i

i
i i

y pR
p p
−

=
−

. 

This is called the Pearson residual, because 2
iR  is the contribution of the i th 

observation to the (here not discussed) Pearson chi-square statistic for model 
comparison. It is important to note that usually Pearson residuals exceeding a 
value of two in absolute value warrant a closer look. In R, Pearson residuals can 
easily obtained using the command resid(fit, type=”pearson”), when 
object fit contains the results of a logistic regression. 

Deviance Residuals 

An alternative residual is derived from the contribution of instance i  to the 
deviance ˆ( , )D y p . In particular, this contribution is: 

 ( ) ( )( )ˆ ˆ2 log (1 ) log 1i i i i id y p y p= − ⋅ + − − . 

For obtaining a residual that can be well interpreted, we take the square root and 
enhance it by the sign of the difference between true and fitted value: 

 ˆ( )i i i iD sign y p d= − ⋅  

Also here, observations with a deviance residual in excess of two may indicate 
lack of fit. Again, in R, computation is simple: resid(fit, type=”deviance”), 
when as before, object fit contains the results of a logistic regression. 

Studentized Residuals 

The residuals we defined so far take into account the fact that different 
observations have different variances, but they do not account for additional 
variation arising from estimation of the parameters in the way studentized residual 
in multiple linear regression models do. When doing diagnostics with R, 
studentized residuals will be computed and used. The transformation depends on 
the hat matrix and often, the differences are only small. Thus, we omit the details 
on studentizing the residuals here. 
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Tukey-Anscombe Plot 

Also for logistic regression, the Tukey-Anscombe plot remains an important means 
for model diagnostics. For both the y - and the x -axis there are several 
alternatives: we can plot the Pearson or Deviance residuals versus either the 
values of the linear predictor, or versus the fitted probabilities, see below: 
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The interpretation of these plots is more difficult than in multiple linear regression. 
Because every observation may only take two values, either 0 or 1, the residuals 
lie on two monotonous curves.  

Thus, we can only see an inadequacy of the model if we display a smoother: doing 
so basically amounts to comparing against a non-parametric model for ip  or iη , 
respectively. It is important to use a non-robust smoother: else, high or low values 
for ip  with only few observations will be interpreted as outliers and are down-
weighted. This is unwanted.  

When applying plot(fit) on the output of a binary logistic regression, R uses a 
robust smoother. The fragment of code below helps in producing an adequate 
Tukey-Anscombe plot this type of models: 

xx <- predict(fit, type="response") 
yy <- residuals(fit, type="pearson") 
scatter.smooth(xx, yy, family="gaussian", pch=20) 
abline(h=0, lty=3) 

The Normal plot and the Scale-Location plot are of no use in logistic regression 
with the non-grouped data we discussed so far. Checking for influential 
observations may be useful, though. This plot can easily be obtained with  

plot(fit, which=5) 

The results can be seen in the plot below. We see that there is some gap near the 
zero line. In this example here it is caused by the fact that the central observations 
which have small leverages have predicted probabilities around 0.5, and thus 
cannot have large residuals. 
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14 Binomial Regression Models 

In chapter 13 we discussed binary logistic regression for response variables with 
values being either 0  or 1. We will extend this to situations where we need to 
model proportions that are in the interval [0,1] . This can arise naturally with 0 /1-
responses, i.e. always when we have a batch of individuals sharing their 
(predictor) properties. Then, we consider the proportion of 1Y =  for each batch. 
The following examples illustrate the concept: 

Example 1 

Rotenone is an insecticide. It is not surprising that the effect depends on the dose 
which is applied. We made the following observations: 

Concentration
in log  of /mg l

Number of
insects in  

Number of 
killed insects iy  

0.96 50 6 
1.33 48 16 
1.63 46 24 
2.04 49 42 
2.32 50 44 

These data are grouped, and we are mainly interested in the proportion of insects 
that survive at a particular concentration. We will base this on the notion that for 
the number of killed insects, we have ~ ( , )i i iY Bin n p . 

Example 2 

Sometimes, there is more than only one predictor. The following data come from a 
study on infant respiratory disease, namely the proportions of children developing 
bronchitis or pneumonia in their first year of life by type of feeding and sex: 

Sex Feeding Number of
children in  

Number of 
children with 
disease iy  

Boy Bottle 458 77 
 Mixed 147 19 
 Breast 494 47 
Girl Bottle 384 48 
 Mixed 127 16 
 Breast 464 31 

Again, these data are grouped. For a given predictor setting (an instance i ), there 
are multiple observations in . For the number of diseased children, we have 

~ ( , )i i iY Bin n p  as above. Again, the focus is on the proportions ip . 
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14.1 Model and Estimation 

In both of the above examples, we are after a relation between ip  and the linear 
predictor iη , in general notation: 

 1( 1| ,..., )i i pp P Y x x= =  is related to 0 1 1 ...i i p ipx xη β β β= + + +  

This very much resembles the situation in chapter 13, except that we now have 
grouped data, i.e. an instance i  contains information on more than one single 
individual. We have already seen in chapter 13, i ip η=  is not appropriate because 
we require [0,1]ip ∈ . We will again use the logit link function such that ( )i ig pη = : 

 0 1 1log ...
1

i
i p ip

i

p x x
p

β β β
⎛ ⎞

= + + +⎜ ⎟−⎝ ⎠
 

Note that here ip  is also the expected value [ / ]i iE Y n , and thus, also this model 
here fits within the GLM framework. Because i in p  has a Binomial distribution, the 
log-likelihood function will be: 

 
1

( ) log log( ) (1 ) log(1 )
k

i
i i i i i i

i i

n
l n y p n y p

y
β

=

⎡ ⎤⎛ ⎞
= + + − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ . 

While the β  cannot be found explicitly on the right hand side, they are there 
implicitly via the fitted values ip . Parameter estimation is again done using MLE. 
Because we now have grouped data, the syntax for model fitting with R is slightly 
different: 

> killsurv 
     killed surviv 
[1,]      6     44 
[2,]     16     32 
[3,]     24     22 
[4,]     42      7 
[5,]     44      6 
> fit <- glm(killsurv~conc, family="binomial") 

We need to generate a two-column matrix where the first contains the “successes” 
and the second contains the “failures”. The fit is then: 

> summary(glm(killsurv ~ conc, family = "binomial") 
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -4.8923     0.6426  -7.613 2.67e-14 *** 
conc          3.1088     0.3879   8.015 1.11e-15 *** 
--- 
    Null deviance: 96.6881  on 4  degrees of freedom 
Residual deviance:  1.4542  on 3  degrees of freedom 
AIC: 24.675 
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Because there is only a single predictor, the fit is easy to visualize, too: 

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Concentration

P
ro

po
rti

on
 o

f k
ill

ed
 in

se
ct

s
Insecticide: Proportion of Killed Insects

 

The interpretation of the coefficients and the individual hypothesis tests are as 
before in chapter 13. Some new issues arise with the goodness-of-fit statistic. 

14.2 Goodness-of-Fit Test 

We are going to use the residual deviance as a goodness-of-fit measure. This is 
twice the difference between the log-likelihood for our current model and the 
saturated model. This is the same paradigm as before, but now, the saturated 
model no longer has zero deviance. It has as many parameters as there are 
batches, and thus fits the respective proportions perfectly, i.e. ˆ /i i ip y n=  for all 
batches 1,...,i k= . In such a case, the residual deviance becomes: 

 
1

( )ˆ( , ) 2 log ( ) log
ˆ ˆ( )

k
i i i

i i i
i i i i

y n yD y p y n y
y n y=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
= + −⎢ ⎥⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎣ ⎦
∑  

Now because the saturated model fits as well as any model can fit, the deviance 
measures how close our model comes to perfection.  

Provided that the iY  are truly binomial and that the in  are relatively large, the 
deviance is approximately 2χ  distributed where the degrees of freedom are 

(# ) 1k of predictors− −  if the model is correct. Thus, we can use the deviance to 
test whether the model provides an adequate fit. In R, we type 

> pchisq(deviance(fit), df.residual(fit), lower=FALSE) 
[1] 0.69287 

Because this p-value is well in excess of 0.05, we may conclude that this model 
fits sufficiently well – of course we can never conjecture from such a result that the 
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model is correct. We can perform the same test for the null deviance, whose value 
and the degrees of freedom can be taken from the summary output: 

> pchisq(96.6881, 4, lower=FALSE) 
[1] 4.985178e-20 

The p-value is very small, which provides evidence that we cannot ascribe the 
number of killed insects to simple variation not depending on the concentration of 
insecticide.  

Please note that a random variable with a 2
dχ  has mean d  and standard deviation 

d  so that it is often possible to quickly judge whether a deviance is large or small 
without explicitly computing the p-value. Or even more focused on the application: 
if the deviance is far in excess of the degrees of freedom, the model is not worth 
much.  

However, note that the 2χ  is only an approximation which requires sufficiently 
large batches to work well – a rule of the thumb is that at least all 5in ≥ . This 
clearly shows that the quick check for model accuracy is not suitable for non-
grouped binary response as in chapter 13.  

On the other hand, the comparison of two nested models is exactly the same for 
grouped and non-grouped data. Moreover, there are not many aspects with model 
diagnostics. But we will turn our attention to a topic which arises from the 
goodness-of-fit test. 

14.3 Overdispersion 

We have seen above that if the binomial regression model is correct, we expect 
that the residual deviance will be approximately equal to the degrees of freedom. 
However sometimes, we observe deviances that are much larger. Then, we need 
to determine what aspect of the model is faulty. 

The predominant cause is that the model has a wrong structural form, i.e. it does 
not include the right predictors, or we failed to transform and combine them in the 
correct way. This should become apparent from the diagnostic plots. No matter 
how difficult this may be in practice, suppose now that we are able to exclude has 
the wrong structural form. 

Another explanation for too large deviance with respect to the degrees of freedom 
is the presence of a small number of outliers. This is also easy to check with the 
diagnostic plots, fortunately. Having excluded also this possibility, there is a further 
one that remains: deficiencies in the random part of the model: 

A binomial distribution arises when the probability of success is independent and 
identical for each trial within a batch. In this case, the variance of iY  will be equal 
to (1 )i i in p p− . However, if the assumptions are violated, the variance is usually 
greater – this is called overdispersion. The contrary case of lower variance can 
also happen and is called underdispersion. It is much rarer, though. 
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There are two causes for overdispersion. It can be due to non-constant ip , i.e. 
violation of the “identical” assumption. It often happens if unrecorded variables 
have an impact, of if the population we sample from is not homogeneous, i.e. 
clusters exist. Overdispersion can also result from dependence between trials. If 
the response has a common cause, say a disease influenced by genetic factors, 
the responses will tend to be positively correlated. Or, subjects may be influenced 
by the other objects under study: e.g. if the food supply is limited, the survival odds 
of one individual may increase if others die. 

Overdispersion can be dealt with: we can introduce an additional dispersion 
parameter φ  that is estimated from the data – we divide the deviance by the 
degrees of freedom. The dispersion parameter φ̂  has an impact on the inference: 
it appears in the coefficient covariance matrix and (in case of overdispersion) 
leads to smaller confidence intervals and less significant test results for the 
individual hypothesis tests. 
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15 Poisson Regression for Count Data 

This chapter deals with responses that are counts, i.e. positive integers. If the 
counts are upper bounded, then we are usually in the case of a binomial 
regression as in chapter 14. On the other hand, there are situations where the 
counts are unbounded, and all of them are sufficiently large with small relative 
variation, e.g. all instances lie in [5000,6000] . Then the normal approximation 
usually works well, such that a multiple regression model may be used. However, 
there are also situations where the use of a Poisson regression is a must: 

• when the size of the population is unknown and the counts are small 

• when the size of the population is large and hard to come by, and the 
probability of “success”, and thus the counts are small.  

A typical example for the latter case is modeling the incidence of rare forms of 
cancer in a given geographical area. For illustrating the former case, we will 
consider the tortoise example. 

Example 

For 30 of Galapagos Islands’ we have the number of species of tortoise that live 
there, plus five geographic variables. These are the area of the island, the highest 
elevation, the distance to the nearest island, the distance to Santa Cruz island and 
the area of the adjacent island. 

> head(gala) 
             Species  Area Elevation Nearest Scruz Adjacent 
Baltra            58 25.09       346     0.6   0.6     1.84 
Bartolome         31  1.24       109     0.6  26.3   572.33 
Caldwell           3  0.21       114     2.8  58.7     0.78 
Champion          25  0.10        46     1.9  47.4     0.18 
Coamano            2  0.05        77     1.9   1.9   903.82 
Daphne.Major      18  0.34       119     8.0   8.0     1.84 

We first fit a multiple linear regression model and analyze the Tukey-Anscombe 
plot in the left panel below. It does not surprise us that the variance is non-
constant. Moreover, we have previously learnt that a square-root transformation is 
appropriate. Indeed, this clears up the variance issue. Because also the coefficient 
of determination is quite high ( 2 0.78R = ), one might think that the fit is good and 
end the analysis here. 

While the model with the square-root transformed response is adequate, there 
could be room for improvement. Especially the validity of the normal approximation 
is in question, because some of the counts are small. Thus, we use a Poisson 
regression model. 
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15.1 Model, Estimation and Inference 

We have count responses iY  for which we, given the predictors, assume a Poisson 
distribution with parameter iλ , i.e. ~ ( )i iY Pois λ . Our goal is to relate the parameter 
to the predictors, and because iλ  can take positive values only, we will employ the 
log as a link function: 

 0 1 1log( ) ...i i p ipx xλ β β β= + + +  

Because [ ]i iE Y λ= , we again have the previously recognized situation that a link 
functions opens the door to modeling the expected value of the distribution of Y  by 
the linear predictor. Here, the log-likelihood is: 

 ( )
1

( ) exp( ) log( !)
n

i i i i
i

l y yβ λ λ
=

= − −∑  

Again, there is no closed form solution and we have to resort to the iteratively 
reweighted least squares approach for an approximation. We fit the Poisson 
regression model to the Galapagos data: 

> summary(glm(Species ~ ., family = "poisson", data = gala) 
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)  3.155e+00  5.175e-02  60.963  < 2e-16 *** 
Area        -5.799e-04  2.627e-05 -22.074  < 2e-16 *** 
Elevation    3.541e-03  8.741e-05  40.507  < 2e-16 *** 
Nearest      8.826e-03  1.821e-03   4.846 1.26e-06 *** 
Scruz       -5.709e-03  6.256e-04  -9.126  < 2e-16 *** 
Adjacent    -6.630e-04  2.933e-05 -22.608  < 2e-16 *** 
--- 
    Null deviance: 3510.73  on 29  degrees of freedom 
Residual deviance:  716.85  on 24  degrees of freedom 
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As a goodness-of-fit measure we will again use the residual deviance. Here, it is: 

 
1

ˆ2 log ( )ˆ
n

i
i i i

i i

yD y y λ
λ=

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑  

For judging the goodness-of-fit, we can again use the 2χ  asymptotics: the residual 
deviance should in the same range as the degrees of freedom, else we have 
under- or overdispersion, i.e. an inadequate model. As before, if we wish to 
compare two nested models, it can be done by the deviance difference. 

Example 

In our example, the residual deviance is 717 on just 24 degrees of freedom, 
indicating that we have an ill-fitting model if a Poisson distribution for the response 
is correct. Because it is neither outliers nor a deficiency in functional form which 
cause this, the reason must be elsewhere. 

For a random variable with a Poisson distribution, the mean is equal to the 
variance. It is difficult to check this for a model under investigation, but plotting 

ˆ( )y λ−  versus λ̂  serves as a crude approximation.  
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We observe that while the variance is roughly proportional to the mean, it is clearly 
bigger. Thus we are in a case where the variance assumption is violated, but the 
link function, the distribution and the choice of predictors are correct. Thus, the 
estimates for jβ  will be consistent, but the standard errors are wrong. We cannot 
take any conclusions on which predictors are significant from the summary output 
above. 
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Again, we are in a case where we have overdispersion. Also in the context of 
Poisson regression, this can be cured by introducing an additional dispersion 
parameter. It can be estimated by: 

 
ˆ ˆ( ) /ˆ i i iy

n p
λ λ

φ
−

=
−

∑  

This is the sum of squared Pearson residuals, divided by the degrees of freedom 
in this model. We can adjust the summary output by: 

> disp <- sum(resid(fit02,type="pearson")^2)/fit02$df.res 
> disp 
[1] 31.74914 
> 
> summary(fit02, dispersion=disp) 
 
Call: glm(Species ~ ., family = "poisson", data = gala) 
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)  3.1548079  0.2915897  10.819  < 2e-16 *** 
Area        -0.0005799  0.0001480  -3.918 8.95e-05 *** 
Elevation    0.0035406  0.0004925   7.189 6.53e-13 *** 
Nearest      0.0088256  0.0102621   0.860    0.390     
Scruz       -0.0057094  0.0035251  -1.620    0.105     
Adjacent    -0.0006630  0.0001653  -4.012 6.01e-05 *** 
--- 
(Dispersion parameter taken to be 31.74914) 
 
    Null deviance: 3510.73  on 29  degrees of freedom 
Residual deviance:  716.85  on 24  degrees of freedom 
AIC: 889.68 

Note that the estimation of dispersion and regression parameters are independent, 
thus modifying the dispersion parameter does not change the coefficients. In our 
example, some of the predictors now turn out to be non-significant, indeed. There 
is some similarity in the variables which are picked out when compared to the 
multiple linear regression model. 

 



 99 

16 Multinomial Data 

We are now considering data where the response is a categorical variable with 
more than two levels. This can be seen as an extension to binary logistic and 
binomial regression that were discussed in chapters 13 and 14. We will distinguish 
between nominal multinomial data where there is no natural order to the 
response categories, and ordinal multinomial data where this is the case.  

16.1 Multinomial Logit Model 

The multinomial logit model which will be discussed in this section is intended for 
nominal data. It can in principle also be used for ordinal data, but the information 
about the order will not be used. We will study an example: 

Example 

The data we analyze are a simplified subset of the 1996 American National 
Election Study. The target variable is the party identification: Democrat, 
Independent or Republican. As predictors, we here consider age, income as 
(pseudo-)continuous variables, and education level which is a factor with 7 levels. 
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The data are best visualized using mosaic plots. While for the categorical predictor 
education, this is straightforward, we need to categorize age and income first. We 
do so by generating 7 levels each.  

mosaicplot(table(nes$educ,nes$party), color=TRUE, 
           main="Education", xlab="Education", cex=.8, las=2) 
 
income.int <- cut(nes$income, c(0,15,30,45,60,75,90,10^8)) 
mosaicplot(table(income.int, nes$party), color=TRUE, 
           main="Income", cex=.8, las=2) 
 
age.intervals <- cut(nes$age, c(0,25,35,45,55,65,75,100)) 
mosaicplot(table(age.intervals, nes$party), color=TRUE,  
           main="Age", cex=.8, las=2) 

The plots are shown above. We observe that the proportion of Democrats falls 
with educational status, reaching a plateau for the college educated. Also, as 
income increases, there is an increase in the proportion of Republicans. Finally, 
the relation between party and age is not clear. While the (few) very young seem 
to favor the Democrats, there is no clear trend for ages above 25.  

Also note that this is cross-sectional rather than longitudinal data, so we cannot 
say anything about what will happen with an individual when it gets older or 
develops to a higher income. With such data, we will only be able to make 
conclusions about the relative probability of party affiliations for different 
individuals with varying age, income and education. 

Model 

From the marginal distributions above we conclude that there are relations 
between the predictors and the response. Our goal is now to include them in a 
multivariate regression type model to answer whether and which of them are 
statistically significant. This can be done with the multinomial logit model. Let iY  
be a random variable coding the response categories with values 1,2,..., J . Then, 

 ( )ij ip P Y j= =  

is the probability that the response of the i th observation falls into the jth category. 
As with binary data, where 2J = , we may encounter both non-grouped and 
grouped data.  

Thus, let ijY  be the number of observations falling into category j  for group or 
individual i . Then, we define  

 i ij
j

n Y=∑ , 

which is the number of individuals in group i . For non-grouped data, 1in =  for all 
observations i , and also, only one of the ijY  will be equal to one, and the rest will 
be zero. The ijY , conditional on the total in , follow a multinomial distribution: 
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As with binomial data, our goal will again be to find a relation between the 
probabilities ijp  and the predictors ix , while ensuring that the probabilities are 
restricted to values between 0 and 1. We will apply a similar idea as before: 

 0 1 1
1

( )log log ...
( 1)

iji
ij j j i pj ip

i i

pP Y j x x
P Y p

η β β β
⎛ ⎞ ⎛ ⎞=

= = = + + +⎜ ⎟ ⎜ ⎟=⎝ ⎠ ⎝ ⎠
 for all 2,...,j J=  

This is a logit model for probability quotients, where we compare each of the 
categories against the first one, which serves as the reference category. The use 
of such a baseline category is dictated by the constraint that 1ijj

p =∑ .  

In principle, we are free in the choice of the baseline, but we here choose the first 
category because this is what R does by default. Also note that the above is an 
equation system with 1J −  rows, where the coefficients are different in each row. 
The parameters will be estimated using a maximum likelihood approach. In R, this 
can be done using function multinom() from library(nnet).  

> library(nnet) 
> fit <- multinom(party ~ age + income + educ, data=nes) 
# weights:  30 (18 variable) 
initial  value 1037.090 
iter  10 value  783.325 
iter  20 value  756.095 
iter  30 value  755.807 
final value     755.806 
converged 
> summary(fit) 
Call: 
multinom(formula = party ~ age + income + educ, data = nes) 
 
Coefficients: 
      (Intrcpt)      age   income   educ.L   educ.Q   educ.C 
Indpt    -5.136    0.005    0.016    5.244   -6.341    4.693 
Republ   -1.409    0.010    0.013    0.564   -0.720    0.017 
         educ^4   educ^5   educ^6 
Indpt    -2.552    1.291   -0.539 
Republ    0.000   -0.103   -0.129 
 
Std. Errors: 
     (Intrcpt)      age   income   educ.L    educ.Q   educ.C 
Indpt    0.643    0.011    0.005    0.461    0.396    0.473 
Republ   0.275    0.004    0.002    0.432    0.393    0.328 
          educ^4    educ^5    educ^6 
Indpt  0.471    0.489    0.430 
Republ 0.263    0.217    0.176 
 
Residual Deviance: 1511.612  
AIC: 1547.612 
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We observe that quite a number of parameters are estimated. Here in particular, it 
is 18 parameters, and the general formula is * ( 1)p J⋅ − , where *p  is the number of 
columns in the design matrix, i.e. 1 for the intercept plus the number of predictors 
at their respective degrees of freedom. This shows us that for estimating 
multinomial logit models with many response categories we will quickly need a lot 
of observations. The rule of the thumb, saying that we need at least 5 observations 
per estimated parameters is still valid here.  

Inference 

For inferring whether the k th predictor has a significant impact on the response, 
we cannot perform individual hypothesis tests anymore, although standard errors 
for the estimates are provided. The reason is that now all parameters 2 ,...,k kJβ β  
need simultaneously be equal to zero. Thus, we have to resort to a comparison of 
nested models, which will as before be based on log-likelihood ratios, resp. 
deviance differences. As an example, we will compare against a model without 
education as a predictor variable: 

> fit.age.inc <- multinom(party ~ age + income, data=nes) 
> deviance(fit.age.inc)-deviance(fit) 
[1] 13.70470 
> pchisq(13.70470, fit$edf-fit.age.inc$edf, lower=FALSE) 
[1] 0.3199618 

We obtain a p-value of 0.32 and thus, there is no significant contribution of 
predictor education. This may come as a surprise regarding the mosaic plot 
shown above. However, the biggest differences in party affiliation are among the 
young people below 25 years of age, which represent only a very small fraction of 
the observations. Hence, we can do without education here. 

Prediction 

One of the predominant goals with multinomial logit models is to obtain predicted 
probabilities. We here show them for some arbitrary 10 instances out of the 944 
that are present in total. 

> round(predict(fit, type="probs"),3)[sample(1:944)[1:10],] 
    Democrat Indpt Republ 
743    0.339 0.058  0.603 
239    0.524 0.018  0.457 
659    0.515 0.036  0.449 
174    0.513 0.024  0.462 
903    0.282 0.042  0.676 
863    0.345 0.037  0.618 
96     0.624 0.035  0.340 
162    0.625 0.035  0.340 
923    0.393 0.048  0.559 
795    0.410 0.033  0.557 

From the model output above, we learned that the probability of being in favor of 
the Republican party increases with income and age. The same is true for the 
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Independent. However, because this party is only small, the intercept is smaller, 
and thus also the fitted probabilities. When we for a person need to predict which 
party he/she is going to vote for, we would just choose the one with the highest 
probability. This is easy to obtain from R: 

> predict(fit, type="class")[sample(1:nrow(nes))[1:10]] 
 [1] Republ   Democrat   Democrat   Democrat   Republ   
Republ   Democrat   Democrat   Republ   Republ 

Model Diagnostics 

Up until today, there is no meaningful definition of what residuals are in the context 
of the multinomial logit model. There are some for each of the 1J −  equations in 
the system, and they also depend on the choice of the baseline category. How 
these could be displayed in comprehensive form is unclear. Thus, we here remain 
without effective tools for model enhancement. 

16.2 Ordinal Multinomial Response 

In this section, the response will still be categorical with 2J ≥ , but now there is 
now a natural ordering among the categories. Here, we will discuss how the order 
can be incorporated when fitting a regression type model. We will consider the 
following example. 

Example 

In a study, the goal was to relate mental impairment to socioeconomic status and 
the frequency of potentially traumatic events in a persons’ life, such as e.g. death 
of relatives, divorce, periods of unemployment, etc. The response variable 
mental was ordinal with levels “none”, “weak”, “moderate” and “strong”, taken 
from the judgment by an expert. Predictor ses is binary with levels “low” and 
“high”, coding for the respective socioeconomic status. Finally, behind life there 
is a count, i.e. the number of events. Thus, this predictor was square root 
transformed.  

Again, the raw data are best visualized with mosaic plots below. It seems as if low 
socioeconomic status and increasing number of traumatic events contribute to a 
higher state of mental impairment. However, we want to go beyond this 
visualization of marginal distribution and use a regression model. 

mosaicplot(table(impair$ses, impair$mental), color=TRUE,  
           main="Socioeconomic Status", xlab="ses", cex=.8, 
           las=2) 
 
life.intervals <- cut(impair$life, c(0,1,3,7,10)) 
mosaicplot(table(life.intervals, impair$mental), color=TRUE,  
           main="Traumatic Events", xlab="life", cex=.8,  
           las=2) 
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Model 

Suppose we have J  ordered categories and for an individual i , with ordinal 
response iY , we again have: 

 ( )ij ip P Y j= =  for 1,...,j J= . 

With an ordered response, it is often easier and more powerful to work with 
cumulative probabilities, i.e. 

 ( )ij iP Y jγ = ≤ . 

These are obviously increasing, and also invariant under the combination of 
adjacent categories. Moreover, 1iJγ = , so we need only to model 1J −  
probabilities. As usual, we must link the γ s to a linear combination of the 
predictors. We will consider three possibilities which all take the form 

 ( ) T
ij j ig xγ α β= − . 

For the link function ( )g ⋅ , we can either choose the usual logit, but also the probit 
and the complementary log-log are possible. Notice that we have explicitly 
specified the intercepts jα , thus the predictor vector ix  does not include an 
intercept. Moreover, the regression coefficients β  do not depend on the class j  
and thus, the predictors have some uniform effect on the response categories. 

This model is much easier to comprehend if we use the notion of a latent variable 
iZ . It may be thought of as the underlying continuous, but unobserved, response. 

In practice, we are limited to observing iY  which are a discretized version of iZ , 
and we have: 

iY j= , if 1j i jZα α− < ≤ . 

The thresholds jα  do not need to be equidistant and they are usually not known a 
priori, but estimated from the data. Furthermore, we suppose that the relation 
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between the latent variable iZ  and the predictors is given by some multiple linear 
regression model, i.e. 

 T
i i iZ x Eβ= +  

This notion of a latent continuous response can be visualized with the plot below. 
We see that Z  is positively related to a single predictor x , with errors E  having a 
specified distribution, usually the logistic distribution. The response iY  has 4 levels 
that are separated by the thresholds jα . 

 

We are now considering the event { }iY j≤ , which is equivalent to { }i jZ α≤ . With 
some algebra, we obtain: 

 ( ) ( ) ( ) ( )T T
ij i i j i j i j iP Y j P Z P E x F xγ α α β α β= ≤ == ≤ = ≤ − = − , 

where ( )F ⋅  is the cumulative distribution function of the iE . The logistic distribution 
where ( ) / (1 )x xF x e e= +  implies the logit link, whereas a Gaussian distribution 
leads to the probit link, and the extreme value distribution to the so-called 
complementary log-log link. We continue with the usual logistic distribution and 
obtain: 

 
exp( )

1 exp( )

T
j i

ij T
j i

x
x

α β
γ

α β
−

=
+ −

. 

We return to our mental impairment example and fit the above proportional-odds 
model using function polr() from library(MASS).  

library(MASS) 
fit <- polr(mental ~ ses + life, data=impair) 

The summary output looks as follows: 
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> summary(fit) 
 
Re-fitting to get Hessian 
 
Call: 
polr(formula = mental ~ ses + life, data = impair) 
 
Coefficients: 
          Value Std. Error t value 
seshigh -1.1112     0.6109  -1.819 
life     0.3189     0.1210   2.635 
 
Intercepts: 
                Value   Std. Error t value 
none|weak       -0.2819  0.6423    -0.4389 
weak|moderate    1.2128  0.6607     1.8357 
moderate|strong  2.2094  0.7210     3.0644 
 
Residual Deviance: 99.0979  
AIC: 109.0979 

As we had expected from the mosaic plots, ses has a negative coefficient, 
meaning that higher socioeconomic status leads to less mental impairment. On the 
other hand, the more traumatic events a person has experienced, the bigger 
his/her potential mental impairment will be. 

The summary output does not only contain the regression coefficients, but also the 
intercepts jα  which serve as categorization thresholds for the latent variable iZ . 
They are obtained from a maximum likelihood optimization which is done 
simultaneously with regression parameter estimation. 

Inference 

Again, instead of performing single hypothesis tests, it is better to run deviance 
tests for nested models. We first try to exclude predictor ses:  

> fit.life <- polr(mental ~ life, data=impair) 
> deviance(fit.life)-deviance(fit) 
[1] 3.429180 
> pchisq(3.429180, fit$edf-fit.life$edf, lower=FALSE) 
[1] 0.0640539 

With a p-value of 0.064 there is no firm statistical evidence that the socioeconomic 
status should be included in the model. On the other hand, when we try to exclude 
the second predictor life:  

> fit.ses <- polr(mental ~ ses, data=impair) 
> deviance(fit.ses)-deviance(fit) 
[1] 7.776457 
> pchisq(7.776457, fit$edf-fit.ses$edf, lower=FALSE) 
[1] 0.005293151 



 107 

Now, we obtain a small p-value and thus, we should not remove the number of 
traumatic experiences from the full model. We will now compare the model where 
only predictor life is present against the null model with only an intercept: 

> fit.empty <- polr(mental ~ 1, data=impair) 
> deviance(fit.empty)-deviance(fit.life) 
[1] 6.514977 
> pchisq(6.514977, fit.life$edf-fit.empty$edf, lower=FALSE) 
[1] 0.01069697 

Again, this is clearly significant and we decide that it seems appropriate to model 
mental impairment by using life as a predictor. 

Prediction 

As above, R allows convenient prediction of either probabilities or class 
membership. We obtain: 

> predict(fit.life, type="probs") 
         none      weak   moderate     strong 
1  0.49337624 0.3037364 0.11173924 0.09114810 
2  0.08867378 0.1932184 0.21717188 0.50093592 
3  0.29105068 0.3324785 0.18429073 0.19218007 
4  0.35380472 0.3345600 0.16025764 0.15137767 
5  0.42203463 0.3245379 0.13545441 0.11797305 
6  0.56498863 0.2747487 0.09032363 0.06993902 

for the probabilities of the first 6 instances. The class memberships are again 
determined by the class with the highest probability, i.e.: 

> predict(fit.life, type="class") 
 [1] none   strong weak   none   none   none 

Model Diagnostics 

As for unordered responses and the multinomial logit model, also here there is no 
useful definition of residuals that would allow for model enhancement through 
diagnostics. 
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17 Non-Parametric Regression 

While we first dealt with multiple linear regression models of the form Y X β ε= + , 
we then generalized this concept and allowed responses following a distribution 
from an exponential family: these were called generalized linear models. In this 
chapter, we now switch our attention to the linear predictor Xη β=  and want to 
make this relation more flexible. 

There is a wide variety of methods available for this. We will first focus on non-
parametric regression methods for the single predictor case. These are also 
known as smoothing techniques. While they can be very useful, an application 
under the presence of many predictors quickly gets challenging due to the curse 
of dimensionality. A way out are additive models: they allow for more flexibility 
than multiple linear regression, yet remain tractable because they impose some 
additional structure than simple smoothing techniques. 

17.1 Introduction 

As pointed out above, we here start with a simple regression problem, i.e. one, 
where only a single predictor is present. Given fixed predictor values 1,..., nx x , we 
observe responses 1,..., ny y  with the relation: 

 ( )i i iy f x ε= + , for all 1,...,i n= . 

The errors iε  are assumed to be iid with zero mean and unknown, but constant 
variance 2

εσ . Another unknown is the functional relation ( )f ⋅ . So far, we 
considered parametric approaches, where we assumed ( )f ⋅  to belong to a 
parametric family of functions, i.e. ( )f ⋅  was specified up to a finite number of 
parameters 1,..., pβ β . Some examples include: 

 0 1( )f x xβ β= +  

 2
0 1 2( )f x x xβ β β= + +  

 3
0 1 2( )f x x xββ β β= + +  

This shows again that the parametric approach is very versatile, in that it is not 
restricted to linear predictors only. We can add many different model terms such 
as polynomials and other functions of the predictors to obtain flexible fits. Note that 
the third function above specifies a parametric, but non-linear regression model, 
which’s fitting and properties were not discussed in this course. 

However, no matter what finite parametric family we choose, its flexibility will 
always be limited and may exclude some plausible functional forms. Thus, there 
are regression problems where a non-parametric approach is appealing. It allows 
to choose ( )f ⋅  from some smooth family of functions, which is generally larger 
than any parametric family. We do still need to make some assumptions on ( )f ⋅ : 
usually, these are continuity and some degree of smoothness. 



 109 

17.2 Advantages and Disadvantages 

If you have good prior knowledge about an appropriate parametric model family or 
also if evidence shows that a linear relation between response and predictor(s) is 
enough, then this is the way to go. Some advantages include: 

• If the parametric model is correct, it is more efficient, i.e. less data are 
necessary to obtain predictions of the same quality. 

• There is a formula that describes the response-predictor relation, and the 
estimated parameters usually have a clear interpretation. 

• Formal inference is possible, i.e. we can attribute the variation in the 
response to one or several predictors. 

• Prediction/interpolation is much simpler to perform and in principle, even 
some (mild) extrapolation is possible, whereas non-parametric models will 
not yield good predictions in areas where little data were present in fitting. 

When some non-linearity becomes apparent from diagnostic plots, we would 
usually first try some variable transformations. If these prove to be non-sufficient, 
trying a non-parametric approach can be useful. Some advantages include: 

• It requires little to no prior knowledge and is more flexible. We can let a tool 
do the job of revealing a good functional form. 

• When one chooses a wrong parametric model, this will result in a bias. 
Because the non-parametric approach assumes far less, it is less prone to 
make bad mistakes. 

17.3 Examples 
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We will consider two examples here, which both originate from the book of Härdle 
(Smoothing Techniques with Implementations in S, 1991). One is based upon real 
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data from Old Faithful geyser in Yellowstone National Park. The aim is to relate 
the waiting time until the next eruption to the duration of the previous eruption. 
Second, we consider a simulated data set, where 

 3 3( ) sin (2 )f x xπ= . 

The y -values are obtained by adding a Gaussian error with 1/ 3εσ = . This 
simulated data set has the advantage that we can check how well some 
smoothing techniques can reveal the true functional relation under the presence of 
some noise – something that is never possible with real data. We also note that 
the function ( )f ⋅  cannot simply be modeled in parametric form. 

While it may seem that the relation between eruption and waiting time with Old 
Faithful geyser is a linear one, the diagnostic plots clearly show that this simple 
relation is not adequate: 
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Thus, using some smoothing techniques may well be appropriate for both 
examples which are considered here. 
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17.4 Kernel Smoothers 

The simplest form of smoothing would be to use some moving average estimator. 
This means that the y -values are averaged over a fixed-size window of x -values. 
We can generalize this simple approach by some weighted smoothing using a so-
called kernel function ( )K ⋅ . Then, our estimate of ( )f ⋅ , which we will call ˆ ( )fλ ⋅  is 
defined as: 

 
1

1ˆ ( )
n

j j
j

f x w Y
nλ

=

= ∑ , with weights 1 j
j

x x
w K

λ λ
−⎛ ⎞

= ⋅ ⎜ ⎟
⎝ ⎠

. 

For the kernel, we require 1K =∫ . For moving average smoothing, the kernel is a 
rectangular box. However in practice, one often prefers to give more weight to the 
observations that are adjacent to x , and thus e.g. chooses the Gaussian density 
function as a kernel. Also note that there is an additional parameter λ . It is called 
the bandwidth and control the smoothness of the fitted curve. 

If the predictor values are spaced very unevenly, the above estimator can yield 
poor results. This problem can be mitigated somewhat by the Nadaraya-Watson 
kernel estimator. It is defined as follows: 

 1

1

ˆ ( )

n

j j
j

n

j
j

w Y
f x

w
λ

=

=

=
∑

∑
, with jw  as above. 

This estimator is a modified version of the above one. Its advantage is that the 
weights for the fitted value at each observation ix  will sum up to one. It can be 
shown that the mean squared error  

2ˆ( ) [( ( ) ( )) ]MSE x E f x f xλ= −  

with optimal choice of the smoothing parameter λ  is of the order 4/5n− . This has to 
be compared with the MSE  of a parametric model which better, and of order 1n− . 
However, this only holds if the parametric model is correct. Else, there will be a 
certain point after which the parametric model does no longer improve. Thus, 
smoothing is like the insurance business – we pay a premium that protects against 
“damage” and is lost in cases of good outcome, i.e. when the true relation could be 
described by a parametric model. However, we are (asymptotically) safe in 
situations when there is “damage”, i.e. a parametric model is not appropriate. 

17.5 Choosing the Kernel 

For the application of a kernel estimator, we have to fix ( )K ⋅  and λ . We will treat 
the choice of the former first. Some desirable properties of a kernel are 
smoothness and compactness. Smoothness is required such that the resulting fit, 
ˆ ( )fλ ⋅  is smooth, which rules out the rectangular box kernel. Compactness ensures 
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that only “local data” have impact on the fitted value ˆiy . This is the reason why the 
Gaussian kernel is less common than the so-called Epanechnikov kernel: 

 
23 (1 ), | | 1

( ) 4
0

x if x
K x

else

⎧ − <⎪= ⎨
⎪⎩

 

It can be shown that this kernel is satisfactory regarding smoothness and 
compactness, and also allows for speedy computation. However, smoothing 
techniques usually are not too crucially dependent on kernel choice and many 
kernel functions will yield acceptable results. 

17.6 Choice of the Bandwith 

Far more important is the choice of the smoothing parameter λ . If we choose a 
too small λ , then we undersmooth and the fit will be very rough. On the other 
hand, if λ  is too large, we oversmooth and important features will be lost. Thus, 
the goal is to find the right compromise between fitting noise and canceling out 
true structure. There are two basic approach to do so, a) by eyeballing, and b) 
using quantitative approaches such as (generalized) cross-validation. 
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The Nadaraya-Watson estimator is implemented in function ksmooth(). We have 
to choose the kernel and can set the bandwidth. As can be seen above, we 
experiment with the default value of 0.5λ = , as well as with 0.125λ =  and 2λ = . 
Clearly, 0.125λ =  is too small, resulting in a fit which is too rough. The other two 
choices both seem reasonable.  

Because it is a tough call between 0.5λ =  and 2λ = , and also because any 
subjectivity in such decisions is usually undesired, we will consider an automatic 
method for smoothing parameter selection. Cross validation is popular for this 
task. The criterion is 

 2
( )

1

1 ˆ( ) ( ( ))
n

i j j
j

CV y f x
n λλ

=

= −∑ , 

where ( )
ˆ ( )jfλ ⋅  is the fit that is obtained when the j th data point was omitted from 

the fitting process. Thus, we fit j  smoothers and for each, we compute the 
discrepancy between the fit for jx  and the observed response jy . Of course, this 
needs to be done for a set of candidate λ  that may seem suitable according to 
some eyeballing. 
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This is a computationally expensive process which is also quite cumbersome to 
implement. For both these drawbacks, there are solutions. Sometimes generalized 
cross validation (GCV) approaches are used which allow for closed form 
computation of some fitting criterion. On the other hand, function hcv() in 
library(sm) in R has a relatively quick implementation for choosing λ  via cross 
validation: 

library(sm) 
lambda <- hcv(eruptions, waiting, display="lines”) 
sm.regression(eruptions, waiting, h=lambda) 

The left panel above shows the cross validation criterion as a function of λ . In 
function sm.regression() a Nadaraya-Watson estimator with Gaussian kernel 
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is employed. The smoothing parameter λ  then is the standard deviation of the 
kernel. We here also show the result with the simulation example: 
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The cross validation quite clearly votes for a small λ . In the fit, we observe some 
slight undersmoothing, but overall, the smoother is able to quite well reveal the 
true structure. 

17.7 Smoothing Splines 

The basic notion behind the non-parametric regression is that there is that the 
relation between predictor and response is: 

 ( )i i iY f x ε= +  

Now our goal typical goal is to minimize the errors iε . Without any restriction on 
the smoothness of ( )f ⋅ , this would naturally lead to a solution that connects all 
data points, is very rough and avoids any error. As we have seen above, this is not 
desirable, because we then treat random variation as true structure. To overcome 
these problems, we may choose the smoothing function such that it balances 
goodness-of-fit versus the smoothness: 

 ( )22

1

1 ( ( )) ( )
n

i i
i

Y f x f x dx
n

λ
=

′′− +∑ ∫  

This is known as the smoothing spline fit. Some algebra shows that the solution 
( )f ⋅  is always going to be a piecewise cubic polynomial in each interval 1( , )i ix x +  

(hereby w.l.o.g. assuming that the ix  are sorted). These have the property that 
( )f ⋅  and its first two derivatives are continuous.  

Because we now know the general form of the solution and it is parametric, the 
task is reduced to estimating the coefficients of the cubic polynomials. In R, this is 
implemented in function smooth.spline(), which also contains an automatic 
selection of the smoothing parameter λ  that is based on cross validation: 
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fit <- smooth.spline(eruptions, waiting) 
plot(eruptions, waiting) 
lines(fit) 
 
fit <- smooth.spline(x, y) 
plot(x, y) 
lines(x, m) 
lines(fit) 

The results with smoothing splines are very similar to what we obtained from the 
kernel estimators, though the fitting paradigm is completely different here. Yet, we 
will still consider a third approach for non-parametric regression 
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17.8 Local Polynomials 

Both kernel and spline smoothing seem to do a good job on the two problems we 
supplied. However, both of them are relatively vulnerable to the presence of 
outliers. A way out is to use a smoothing procedure that is based on fitting local 
polynomials. This works as follows. 

We must select a window. Then, a polynomial is fitted to the data within this 
window using some robust method. The predicted response at the window center 
is the fitted value. Then, the window is slid over the range of the data. In R, 
function loess() implements this, with polynomials of second order for the local 
fits. The smoothing parameter is the window with, which per default is set to 3 / 4 . 
The code for this fit is as follows: 

fit  <- loess(waiting ~ eruptions, data=faithful) 
plot(eruptions, waiting) 
lines(fit$x[order(fit$x)], fit$fitted[order(fit$x)]) 
fit1 <- loess(y ~ x, data=exa) 
fit2 <- loess(y ~ x, data=exa, span=0.22) 
plot(x, y, pch=19, cex=0.7) 
lines(fit1$x[order(fit1$x)], fit1$fitted[order(fit1$x)]) 
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lines(fit2$x[order(fit2$x)], fit2$fitted[order(fit2$x)]) 

For the simulation example, we observe that the first fit with the default window 
size (green line in the plot below) results in oversmoothing, where important 
features in the data are canceled out. We thus correct the window size such that it 
matches the cross validation result obtained with the kernel estimator. Then, the 
result is again similar as before. 
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17.9 Comparison of Methods 

We have now seen three different smoothing techniques which all resulted in very 
similar fits. As this has been a subject of tremendous interest in the statistical 
community for a fairly long time, many more approaches do exists. Saying which is 
the best smoother is impossible – this depends on the data, i.e. the task at hand 
and fact whether human intervention for bandwidth selection is feasible. Due to its 
robust nature, the loess smoother is much liked in practice. In cases where there 
are no outliers, smoothing splines yields very similar fits, but is computationally 
cheaper. 

We will conclude this section with some general remarks: generally, if there was 
no noise, interpolating between the data points would be the method of choice. 
When some moderate amount of noise is present, non-parametric regression is 
often appealing: there is enough signal to justify a flexible fit, and also enough 
noise to make smoothing worthwhile. Finally, with larger amounts of noise or very 
sparse data, parametric methods become relatively more attractive, because 
nothing more than a simple model can be justified. 
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18 Additive Models 

For problems with more than one predictor, the above smoothing techniques are 
no longer appropriate. We require a sufficient number of data points in the 
neighborhood where local fitting is performed. In higher dimensions, this is hard to 
come by with – a fact which is known as the curse of dimensionality. However, it 
may still be the case that a multiple linear regression model of the form 

 0 1 1 ...i i p ip iY x xβ β β ε= + + + +  

is not fully appropriate. There is a wide choice of (predictor) transformations which 
could be tried. But if there are a large number of explanatory variables, this quickly 
becomes very time consuming and it would be very convenient to have an 
automatic tool that assists. This is achieved by the additive model: 

 0 1 1( ) ... ( )i p p iY f x f xβ ε= + + + + , 

where the ( )jf ⋅  are some smooth, potentially non-parametric functions. For the 
errors, we again assume that they are i.i.d. with zero mean and constant variance. 
Such additive models are far more flexible than a linear model (without 
transformations), but can still be efficiently fitted and well interpreted, because the 

( )jf ⋅  can be plotted to give an impression of the marginal relationships. 

Additive modeling (and its fitting algorithms) is again very versatile: we can restrict 
some ( )jf ⋅  to be the identity times jβ . This is, using a predictor in a parametric, 
rather than a non-parametric form. This would also be the natural procedure if 
there are some categorical variables that serve as predictors. Moreover, also the 
presence of interactions between a (two-level) categorical and a continuous 
variable is possible, which means that (two) different non-parametric functions are 
fitted for that predictor. 

18.1 Software for Fitting Additive Models 

There are several packages with which additive models can be fit in R. The two 
most popular ones are library(gam) and library(mgcv). The former allows 
more choice in the smoothers that are employed and is based on a backfitting 
algorithm. This is an iterative procedure that is based on univariate fits. These can 
principally be based on any non-parametric regression method, e.g. smoothing 
splines or loess. We can even use different smoothers on different predictors with 
differing amounts of smoothing. 

On the other hand, library(mgcv) is based on a penalized smoothing spline 
approach. This means that the additive model is in fact re-expressed as a complex 
parametric model based on cubic polynomials. This is all done behind the scenes, 
and it also includes the choice of the smoothing parameters based on generalized 
cross validation. 
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18.2 Example 

We here use data from a study of the relation between atmospheric ozone 
concentration and some meteorological predictors. The data originate from the Los 
Angeles basin and were recorded in 1976. We only consider three predictors: 
temp, the temperature measured at El Monte, ibh, the inversion base height at 
the LAX airport, and ibt, the inversion top temperature, again at LAX. We first fit 
a multiple linear regression model that will serve as a reference. 

>  summary(lm(O3 ~ temp + ibh + ibt, data = ozone)) 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -7.7279822  1.6216623  -4.765 2.84e-06 *** 
temp         0.3804408  0.0401582   9.474  < 2e-16 *** 
ibh         -0.0011862  0.0002567  -4.621 5.52e-06 *** 
ibt         -0.0058215  0.0101793  -0.572    0.568     
--- 
Residual standard error: 4.748 on 326 degrees of freedom 
Multiple R-squared: 0.652,    Adjusted R-squared: 0.6488 
F-statistic: 203.6 on 3 and 326 DF,   p-value: < 2.2e-16 
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We note that predictor ibt is not significant, whereas else, according to the 
summary output, the fit does seem reasonable. The next step is to perform some 
model diagnostics, see the plots on the previous page. 

The Tukey-Anscombe plot shows a very clear violation of the model assumptions. 
We conjecture that the fitted model is not adequate. Moreover, the partial residuals 
(which contain the effect that can be attributed to a predictor, after the response 
has been corrected for the effect of all other predictors) of all three predictors show 
clear non-linearity. We could now try to improve this by searching for 
transformations. While this may be beneficial not only for improving the fit, but also 
for understanding the physical mechanisms behind, we here do without and rely 
on additive models instead. First, we employ function gam() and use a loess 
smoother on each predictor: 

> summary(fit.gam) 
 
Call: gam(O3 ~ lo(temp) + lo(ibh) + lo(ibt), data=ozone) 
 
Deviance Residuals: 
     Min       1Q   Median       3Q      Max  
-13.1146  -2.3624  -0.2092   2.1732  12.4447  
 
(Dispersion Parameter for gaussian family: 18.6638) 
 
    Null Deviance: 21115.41 on 329 degrees of freedom 
Residual Deviance: 5935.096 on 318.0005 degrees of freedom 
AIC: 1916.049  
 
Df for Terms and F-values for Nonparametric Effects 
 
            Df Npar Df Npar F     Pr(F)     
(Intercept)  1                              
lo(temp)     1     2.5 7.4550 0.0002456 *** 
lo(ibh)      1     2.9 7.6205 8.243e-05 *** 
lo(ibt)      1     2.7 7.8434 9.917e-05 *** 

What can we learn from this? First, we see that there are deviances and a 
dispersion parameter. This shows to us, that function gam() can also deal with 
non-Gaussian structures. Indeed, there is an extension to Generalized Additive 
Models, hence the name GAM. Second, we note that all three parameters are 
now significant. However, we spend more degrees of freedom here due to the use 
of the loess smoother; they vary between 2.5-2.9. Moreover, we can compute an 
approximate coefficient of determination: 

> 1-5935.096/21115.41 
[1] 0.7189211 

It improved from 0.652 with the multiple linear regression to 0.719 with the additive 
model. The latter, however, spends more degrees of freedom. Thus, the 
comparison is not a fair one. Also note that the individual hypothesis tests in the 
summary output above originate from a score test and should be seen as 
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approximate at best. It is usually more reliable to perform a nested model 
comparison which has an approximate F-distribution: 

> fit.gam.small <- gam(O3 ~ lo(temp) + lo(ibh), data=ozone) 
> anova(fit.gam.small, fit.gam, test="F") 
 
 
Analysis of Deviance Table 
Model 1: O3 ~ lo(temp) + lo(ibh) 
Model 2: O3 ~ lo(temp) + lo(ibh) + lo(ibt) 
  Resid. Df Resid. Dev     Df Deviance      F Pr(>F) 
1    321.67     6044.6                               
2    318.00     5935.1 3.6648   109.47 1.6005  0.179 

In contrast to the result from the summary output, we here obtain a p-value of 0.18 
which means that predictor ibt is not significant. We can now do some model 
diagnostics: 

> plot(fit.gam, residuals=TRUE, se=TRUE, pch=19, cex=0.7) 
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This shows the three partial residual plots with the smooth functions that were 
fitted, including some confidence bands. For ibt, a horizontal line would fit within 
the confidence bands, which yields some further evidence that we can do without 
this predictor. Moreover, outliers or leverage points may be detected in these 
plots, however here, they do not exist. However, if they did, then it is usually wise 
to work with library(gam) and loess smoothers. 

For the sake of completeness, we here show the fitting process when working with 
library(mgcv), too: 

> fit.mgcv <- gam(O3 ~ s(temp) + s(ibh) + s(ibt), data=ozone) 
> summary(fit.mgcv) 
 
Family: gaussian  
Link function: identity  
 
Formula: 
O3 ~ s(temp) + s(ibh) + s(ibt) 
 
Parametric coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  11.7758     0.2382   49.44   <2e-16 *** 
--- 
Approximate significance of smooth terms: 
          edf Ref.df      F  p-value     
s(temp) 3.386  4.259 20.681 6.84e-16 *** 
s(ibh)  4.174  5.076  7.338 1.36e-06 *** 
s(ibt)  2.112  2.731  1.400    0.245     
--- 
R-sq.(adj) =  0.708   Deviance explained = 71.7% 
GCV score = 19.346  Scale est. = 18.72     n = 330 

Here, we use splines as a smoother for the three predictors. In fact, we are forced 
to do so, because there is no alternative. The amount of smoothing is chosen 
internally by a GCV approach, while with library(gam), this needs to be 
controlled by the user (note that we relied on the default values, which worked well 
in this example).  

There is some more evidence into the direction that predictor ibt is not 
significant. Moreover, the R-squared is (i.e. Deviance explained) takes a similar 
value. Here, we also obtain an adjusted R-squared, which shows some 
improvements on the previous one from multiple linear regression. Finally, we can 
inspect the partial residual plots. We here without displaying them, because the 
resulting plots look almost identical to the ones obtained with library(gam). 


