Crossover designs and Latin Squares

■ Persons as blocks
■ More than one block factor
■ Carry-over effect

Crossover designs

Each person gets several treatments.
block $=$ person, plot $=$ person \times time
Example: Wine-tasting
Judge

Tasting	1	2	3	4	5	6	7	8
1	2	4	4	2	1	2	4	4
2	1	3	1	4	4	4	2	3
3	3	2	2	3	3	1	1	1
4	4	1	3	1	2	3	3	2

Randomisation: Tasting order of wines

Row-Column-Design

■ Each judge tastes each wine equally often ($1 \times$), person=block

- Each wine gets equally often tasted first, second, third, fourth ($2 \times$). position in tasting order=block
$\Longrightarrow 2$ systems of blocks
persons (columns), position (rows)

Definition of Latin Squares

A Latin square of order n is an arrangement of n symbols in a $n \times n$ square array in such a way that each symbol occurs once in each row and once in each column.

$$
\begin{array}{|llll|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} \\
\mathrm{~B} & \mathrm{D} & \mathrm{~A} & \mathrm{C} \\
\mathrm{C} & \mathrm{~A} & \mathrm{D} & \mathrm{~B} \\
\mathrm{D} & \mathrm{C} & \mathrm{~B} & \mathrm{~A} \\
\hline
\end{array}
$$

A	B	C	D	E	F
B	C	D	E	F	A
C	D	E	F	A	B
D	E	F	A	B	C
E	F	A	B	C	D
F	A	B	C	D	E

Construction of Latin Squares

Cyclic method:
\square Write the letters in the top row in any order.
■ In the second row, shift the letters one place to the right.

- Continue like this ...

Use of Latin squares

Interpretation:
n^{2} plots

- 2 system of blocks, 1 factor
- 1 system of blocks, 2 factors
- 3 factors

Graeco-Latin Square

Take a Latin square of order n and superimpose upon it a second square with treatments denoted by greek letters. The two squares are orthogonal if each Latin letter occurs with each greek letter exactly once. The resulting design is a Graeco-Latin Square.

A α	B β	C γ	D	E_{ϵ}
B γ	C δ	D ϵ	E	A β
$\mathrm{C} \epsilon$	D α	E β	A	B δ
D β	E γ	A δ	B	$\mathrm{C} \alpha$
E δ	A ϵ	$\mathrm{B} \alpha$	C	D

Construction Row-Column-Design

Take two Latin squares of size 4.

	Judge								
	1	2	3	4	5	6	7	8	
1	A	B	C	D	A	B	C	D	

Tasting 2×1 B \quad C $\quad D \quad A \quad C \quad D \quad A \quad B$
3 C \quad D \quad A \quad B \quad B $A \quad A \quad C$

4 | | D | A | B | C | D | C | B | A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Randomly permute the rows

Permutation 3241

		Judge							
			1	2	3	4	5	6	7

Randomly permute the columns

Permutation 52134687

		Judge							
		5	2	1	3	4	6	8	7
	1	2	3	4	5	6	7	8	
Tasting	1	B	D	C	A	B	A	C	D
	2	C	C	B	D	A	D	B	A
	3	D	A	D	B	C	C	A	B
	4	A	B	A	C	D	B	D	C

Model

$$
Y_{i j}=\mu+p_{i}+z_{j}+T_{k(i j)}+\epsilon_{i j}
$$

p_{i} and z_{j} are person and position effect (both random).
A unit (i, j) gets exactly one treatment (wine) $k(i j)$. $T_{k(i j)}$ is the effect of wine $k(i j)$.

Anova Table

Source	df	MS	F
Persons	7		
Tasting	3		
Wine	3	$M S_{\text {Wine }}$	$M S_{\text {Wine }} / M S_{\text {res }}$
Residual	18	$M S_{\text {res }}$	
Total	31		

Properties of Crossovers

+ more efficient than parallel designs, lower costs
- no treatment should leave a subject in a very different state at the end of the period (cure, death)
- drop-out more likely
- experimental situation \neq real situation sequence one treatment
- carry-over effect: treatment effect lasts into subsequent time-period

A
B
effect of $B+$ lasting effect of A

Pain Medication

36 subjects with chronic pain take three different drugs response: hours without pain

T_{1}	T_{2}	T_{3}	T_{1}	T_{3}	T_{2}	T_{2}	T_{1}	T_{3}
6	8	7	6	6	5	2	8	7
4	4	3	7	3	3	0	8	11
13	0	8	6	0	2	3	14	13
5	5	4	8	11	10	3	11	12
8	12	5	12	13	11	0	6	6
4	4	3	4	13	5	2	11	8

more data

T_{2}	T_{3}	T_{1}	T_{3}	T_{1}	T_{2}	T_{3}	T_{2}	T_{1}
8	7	12	6	14	4	12	11	7
4	3	6	4	4	6	1	7	9
2	12	10	4	13	0	5	12	8
2	0	9	0	9	3	2	3	14
3	5	11	1	6	8	4	5	6
1	10	11	8	12	5	6	6	5

Anova Table

Source	SS	df	MS	F	P-Wert
Persons	503.6	35	14.4		
Time-period	192.1	2	96.0		
Medication	268.7	2	134.3	14.4	0.0000
Residual	632.6	68	9.3		
Total	1596.9	107			

Treatment comparison ($\mathrm{se}=\sqrt{2 M S_{\text {res }} / 36}=0.72$):
$T_{1}-T_{2}=3.84 \quad T_{1}-T_{3}=2.34 \quad T_{2}-T_{3}=-1.50$

Carry-over Effect

Carry-over effect $=$ Interaction treatment \times time-period

	time-period 1	time-period 2
group 1	T_{1}	T_{2}
group 2	T_{2}	T_{1}

Approaches:
■ wash-out period

- model carry-over effects:

ABB
A B B A
or
BAA BAAB

