2^{k} Factorials

- Experiments with many factors

■ Each factor has only two levels: high (+) and low(-)
$\square 2^{k}$ runs for a complete replicate with k factors

- Blocking in factorials

2^{2} - Design

run A Treatment
$\begin{array}{cccc}1 & - & - & (1) \\ 2 & + & - & a \\ 3 & - & + & b \\ 4 & + & + & a b\end{array}$

Estimation of main effects and interaction

$$
\begin{aligned}
\hat{A} & =\bar{y}_{A+}-\bar{y}_{A-}=\frac{1}{2 n}(a b+a-b-(1)) \\
\hat{B} & =\bar{y}_{B+}-\bar{y}_{B-}=\frac{1}{2 n}(a b+b-a-(1)) \\
\widehat{A B} & =\frac{1}{2 n}((a b-b)-(a-(1)))=\frac{1}{2 n}(a b+(1)-a-b)
\end{aligned}
$$

(n replicates, same notation for totals)

Algebraic signs for calculating effects

$$
\begin{array}{ccccc}
\text { Treatment } & \text { I } & \text { B } & \text { AB } \\
(1) & + & - & - & + \\
\mathrm{a} & + & + & - & - \\
\mathrm{b} & + & - & + & - \\
\mathrm{ab} & + & + & + & +
\end{array}
$$

2^{3}-Design

Algebraic signs for calculating effects

Treatment I A B AB C AC BC ABC

(1)	+	-	-	+	-	+	+	-
a	+	+	-	-	-	-	+	+
b	+	-	+	-	-	+	-	+
ab	+	+	+	+	-	-	-	-
c	+	-	-	+	+	-	-	+
ac	+	+	-	-	+	+	-	-
bc	+	-	+	-	+	-	+	-
abc	+	+	+	+	+	+	+	+

Blocking in Factorials

run	A	B	C	D
1	-	-	-	1
2	-	-	+	1
3	-	+	-	1
4	-	+	+	1
5	+	-	-	2
6	+	-	+	2
7	+	+	-	2
8	+	+	+	2

What is wrong with this design?

Example

$>$ data

	Y	A	B	C
1	13	-1	-1	-1
2	63	-1	-1	1
3	91	-1	1	-1
4	113	-1	1	1
5	119	1	-1	-1
6	125	1	-1	1
7	137	1	1	-1
8	139	1	1	1

Example continued

$>\operatorname{modl}=\operatorname{aov}\left(\mathrm{y}^{\sim} \mathrm{A} * \mathrm{~B} * \mathrm{C}\right)$
> summary (modi)
Df Sum of Sq Mean Sq

A	1	7200	7200
B	1	3200	3200
C	1	800	800
:	1	1152	1152
:	1	512	512
:	1	128	128
C	1	72	72

> mod1\$coef
(Intercept) A B C A:B A:C B:C A:B:C
$\begin{array}{lllllll}100 & 30 & 20 & 10 & -12 & -8 & -4\end{array}$

with blocking

$>\bmod 2=\operatorname{aov}\left(\mathrm{y}^{\sim} \mathrm{D}+\mathrm{A} * \mathrm{~B} * \mathrm{C}\right)$
$>$ summary (mod2)

	Df	Sum of	Sq
Mean	Sq		
D	1	7200	7200
B	1	3200	3200
C	1	800	800
A:B	1	1152	1152
A:C	1	512	512
B:C	1	128	128
A:B:C	1	72	72

> mod2\$coef
(Intercept) D A B C A:B A:C B:C A:B:C
10030 NA $2010-12 \quad-8 \quad-4$

A little bit better:

run	A	B	C	D
1	-	-	-	2
2	-	-	+	1
3	-	+	-	1
4	-	+	+	2
5	+	-	-	2
6	+	-	+	1
7	+	+	-	1
8	+	+	+	2

Blocks confounded with BC

$>\bmod 3=\operatorname{aov}\left(\mathrm{y}^{\sim} \mathrm{D}+\mathrm{A} * \mathrm{~B} * \mathrm{C}\right)$
$>$ summary (mod3)

Blocks confounded with ABC

run	A	B	C	D
1	-	-	-	1
2	-	-	+	2
3	-	+	-	2
4	-	+	+	1
5	+	-	-	2
6	+	-	+	1
7	+	+	-	1
8	+	+	+	2

Construction method

■ Choose an interaction to be confounded with blocks

- The principal block consists of (1) and all treatments which have an even number of letters in common with the chosen interaction.
$\square 2^{k}$ design in 2^{l} blocks: choose I confounded interactions. The principal block consists of (1) and all treatments which have an even number of letters in common with the chosen interactions. For the other blocks multiply the principal block with a letter not included yet.

Partial confounding

2^{3} design in 2 blocks: [(1),ab,ac,ab] and [a,b,c,abc] Take four replicates to get sufficient precision, confound a different interaction in each replicate.

I: [(1),ab,ac,ab] and II: [a,b,c,abc] ABC confounded
III: [(1),a,bc,abc] and IV: [b,c,ab,ac] BC confounded
V: [(1),b,ac,abc] and VI: [a,c,ab,bc] AC confounded
VII: [(1),c,ab,abc] and VIII: [$a, b, a c, b c]$ AB confounded Main effects are estimated from 8 blocks, interactions from 6 blocks.

