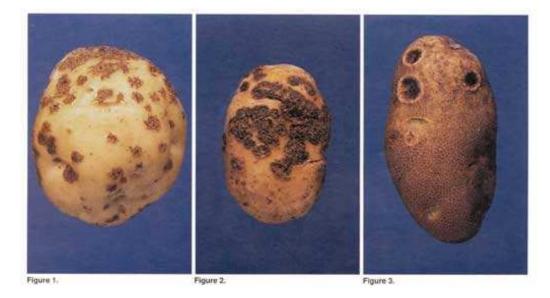
Single Factor Experiments

Topic:

- Comparison of more than 2 groups
- One-Way Analysis of Variance
- F test
- Learning Aims:
 - Understand model parametrization
 - Carry out an anova
- Reason: Multiple t tests won't do!

Potatoe scab



widespread disease

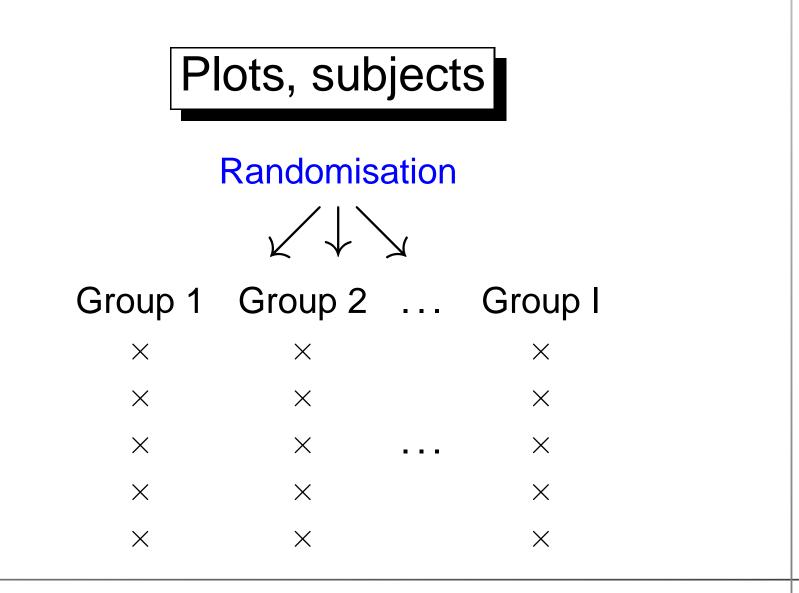
- causes economic loss
- known factors: variety, soil condition

Experiment with different treatments

- Compare 7 treatments for effectiveness in reducing scab
- Field with 32 plots, 100 potatoes are randomly sampled from each plot
- For each potatoe the percentage of the surface area affected was recorded. Response variable is the average of the 100 percentages.

Field plan and data

2	1	6	4	6	7	5	3
9	12	18	10	24	17	30	16
1	5	4	3	5	1	1	6
10	7	4	10	21	24	29	12
2	7	3	1	3	7	2	4
9	7	18	30	18	16	16	4
5	1	7	6	1	4	1	2
9	18	17	19	32	5	26	4



Complete Randomisation

- a) number the plots 1, ..., 32.
- b) construct a vector with 8 replicates of 1 and 4 replicates of 2 to 7.
- c) choose a random permutation and apply it to the vector in b).

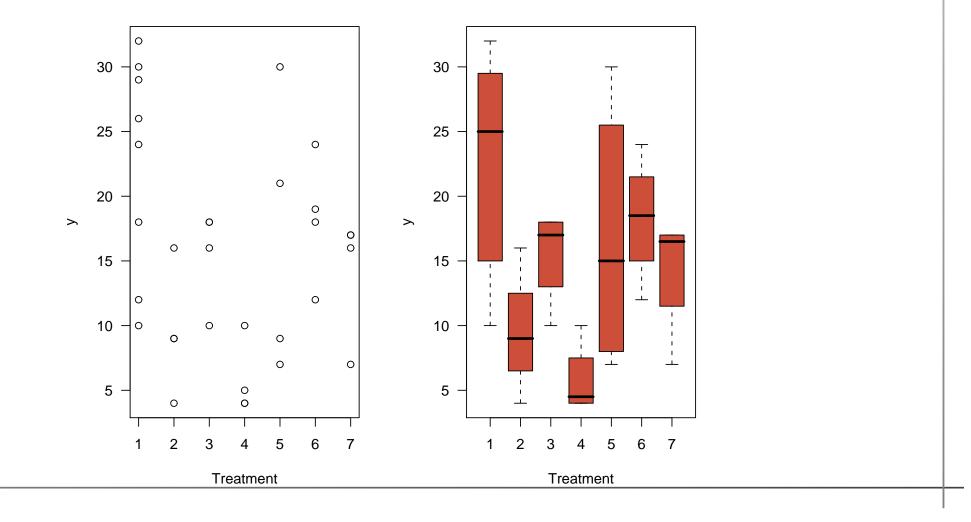
in R:

- > treatment=factor(c(rep(1,8),rep(2:7,rep(4,6))))
- > sample(treatment)

Exploratory data analysis

Group				J	/				\overline{y}
1	12	10	24	29	30	18	32	26	22.625
2	9	9	16	4					9.5
3	16	10	18	18					15.5
4	10	4	4	5					5.75
5	30	7	21	9					16.75
6	18	24	12	19					18.25
7	17	7	16	17					14.25

Graphical display



Two sample t tests

Group 1	– Group 2	:	$H_0:\mu_1$	$=\mu_2$
Group 1	– Group 3	:	$H_0:\mu_1$	$=\mu_3$
Group 1	– Group 4	:	$H_0:\mu_1$	$= \mu_4$
Group 1	– Group 5	:	$H_0:\mu_1$	$= \mu_5$
Group 1	– Group 6	:	$H_0:\mu_1$	$= \mu_6$
Group 1	– Group 7		$H_0:\mu_1$	$=\mu_7$

 $\alpha = 5\%$, P(Test not significant $|H_0) = 95\%$ 7 groups, 21 independent tests: P(none of the tests sign. $|H_0) = 0.95^{21} = 0.34$ P(at least one test sign. $|H_0) = 0.66$ (more realistic: 0.42) $1 - (1 - \alpha)^n$

Bonferroni correction

Choose α_T such that

$$1 - (1 - \alpha_T)^n = \alpha_E = 5\%$$

($\alpha_T = \alpha$ "testwise", $\alpha_E = \alpha$ "experimentwise")

Since $1 - (1 - \frac{\alpha}{n})^n \approx \alpha$, the significance level for a single test has to be divided by the number of tests.

Overcorrection, not very efficient.

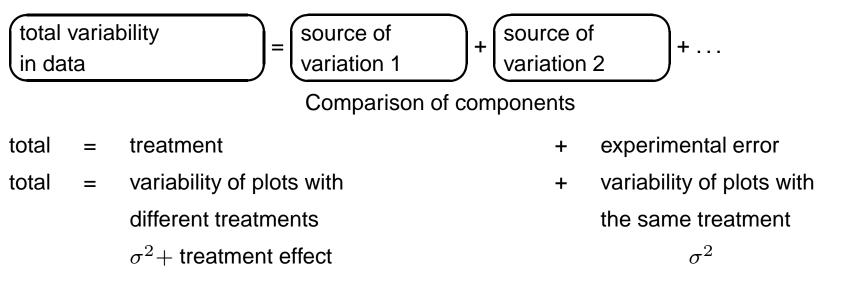
Analysis of variance

Comparison of more than 2 groups

for more complex designs

global F test

Idea:



Definitions

- Factor: categorical, explanatory variable
 Level: value of a factor
 Ex 1: Factor= soil treatment, 7 levels 1 7.
 ⇒ One-way analysis of variance
 Ex 2: 3 varieties with 4 quantities of fertilizer
 ⇒ Two-way analysis of variance
- Treatment: combination of factors
- Plot, experimental unit: smallest unit to which a treatment can be applied Ex: feeding (chicken, chicken-houses), dental medicine (families, people, teeth)

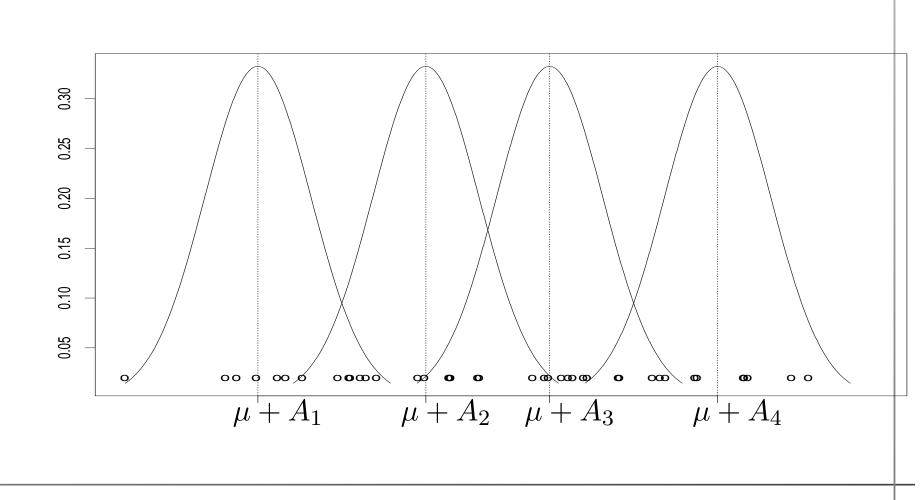
One-way analysis of variance

Model:

(1) $Y_{ij} = \mu + A_i + \epsilon_{ij}$ $i=1,...,I; j=1,...,J_i$

 $\mu = \text{overall mean} \\ A_i = \text{ith treatment effect} \\ \epsilon_{ij} = \text{random error, } \mathcal{N}(0, \sigma^2) \text{ iid.}$

Illustration of model (1)



Necessary constraint

Group mean

$\mu + A_i$	$\mu + A_i$	$\mu + A_i$
4	4+0	3+1
5	4+1	3+2
3	4-1	3+0

usual constraint: $\sum J_i A_i = 0$, $\sum A_i = 0$ if $J_i = J$ for all *i* (A_i deviation from overall mean)

or $A_1 = 0$, resp. $A_I = 0$

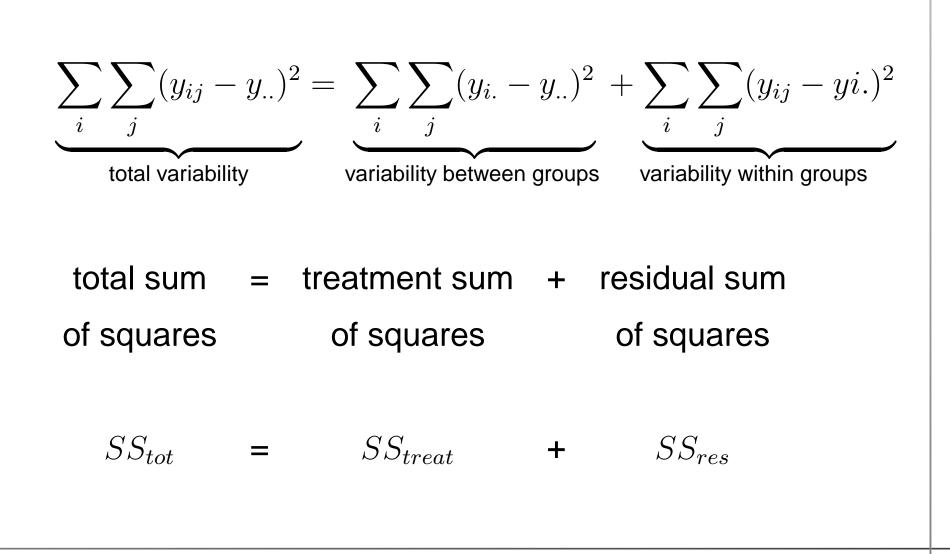
Decomposition of the deviation of a response from the overall mean

$$y_{ij} - y_{..} = \underbrace{y_{i.} - y_{..}}_{\text{deviation of}} + \underbrace{y_{ij} - y_{i.}}_{\text{deviation from}}$$

the group mean the group mean
$$-\frac{1}{2}\sum y_{i.} = \underbrace{y_{i.} - y_{..}}_{\text{deviation of}} + \underbrace{y_{ij} - y_{i.}}_{\text{deviation from}}$$

$$y_{i.} = rac{1}{J_i} \sum_j y_{ij}$$
 mean of group i ,
 $y_{..} = rac{1}{N} \sum_i \sum_j y_{ij}$ overall mean, $N = \sum J_i$.

Analysis of variance identity



Total mean square: $MS_{tot} = SS_{tot}/(N-1)$ Residual mean square: $MS_{res} = SS_{res}/(N-I)$

$$\frac{SS_{res}}{N-I} = \frac{\sum_{i} (J_i - 1)S_i^2}{\sum_{i} (J_i - 1)}, \quad S_i^2 = \frac{\sum_{j} (y_{ij} - y_{i.})^2}{J_i - 1}$$

$$MS_{res} = \hat{\sigma}^2 = \widehat{Var(Y_{ij})}, \quad E(MS_{res}) = \sigma^2$$

Treatment mean square: $MS_{treat} = SS_{treat}/(I-1)$

$$E(MS_{treat}) = \sigma^2 + \sum J_i A_i^2 / (I-1)$$

 $df_{tot} = df_{treat} + df_{res}, \quad N - 1 = I - 1 + N - I$

R: anova table

- > mod1=aov(y~treatment,data=scab)
- > summary(mod1)

Df Sum Sq Mean Sq F value Pr(>F) treatment 6 972.34 162.06 3.608 0.0103 * Residuals 25 1122.88 44.92

$$F = \frac{MS_{treat}}{MS_{res}} \approx 1 \implies \text{no treatment differences}$$
$$F = \frac{MS_{treat}}{MS_{res}} \gg 1 \implies \text{treatment differences exist}$$

 $H_0: \quad \text{all } A_i = 0$ $H_A: \quad \text{at least one } A_i \neq 0$

Since $\epsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$, $F = \frac{MS_{treat}}{MS_{res}}$ has under H_0 an F distribution with I - 1 and N - I degrees of freedom.

one-sided test: reject H_0 if $F > F_{95\%,I-1,N-I}$

Chisquare and t distribution

$$T = \frac{Z}{\sqrt{X/n}}$$

is called the *t* distribution with *n* df, $T \sim t_n$

F distribution

Let $X_1 \sim \chi_n^2$ and $X_2 \sim \chi_m^2$ be independent random variables. The distribution of

$$F = \frac{X_1/n}{X_2/m}$$

is called the *F* distribution with *n* and *m* df, $F \sim F_{n,m}$

Properties:
$$F_{1,m} = t_m^2$$

 $E(F_{n,m}) = \frac{m}{m-2}$