Incomplete block designs

■ Small block size, larger number of treatments
■ Non-orthogonal designs

Test of 7 different Tyres

Cars

		1	2	3	4	5	6	7
	1	X	X	X	X			
	2	X	X			X	x	
	3	x	X		x	x		
Tyres	4			X	X		X	X
	5			x	x	x		X
	6		X	X			X	X
	7	X				X	X	X

Blocks	Treatments			
1	1	2	3	7
2	1	2	3	6
3	1	4	5	6
4	1	3	4	5
5	2	3	5	7
6	2	4	6	7
7	4	5	6	7

Balanced incomplete block design

- n treatments, block size $k,(k<n)$
\square Any two treatments occur together the same number of times (λ times)

First Solution: $\binom{n}{k}$ blocks, a different combination of treatments in each block.
$n=7, k=4:\binom{7}{4}=\frac{7 \cdot 6 \cdot 5}{3 \cdot 2}=35$ cars

Search for smaller designs

Necessary conditions for a BIBD

b blocks, each treatment occurs r times
(1)
(2)

$$
\begin{aligned}
n r & =b k \\
r(k-1) & =\lambda(n-1)
\end{aligned}
$$

(1) number of observations
(2) number of treatment pairs for a fixed treatment

Design is called symmetric if $n=b$.

Construction of BIBD

■ Problem: Given k and n, how large are r, b, and λ ?
\square Conditions (1) and (2) are necessary but not sufficient.
$■$ Several methods of construction exist.

- There are tables of BIBD with small sizes (Cochran \& Cox 1992).
- Partially balanced block designs (PBIB) if some treatment comparisons are less important.

Analysis of BIBD

■ Statistical model:

$$
Y_{i j}=\mu+T_{i}+\beta_{j}+\epsilon_{i j}
$$

where T_{i} is the treatment effect, β_{j} the block effect.
\square Block and treatment factor are not orthogonal, because not all combinations appear.

- Calculate first block sum of squares, then adjusted treatment sum of squares.

