Incomplete block designs

Small block size, larger number of treatmentsNon-orthogonal designs

Test of 7 different Tyres

Cars														
	2	ર	Δ	5	6	7		BIOCKS	Ir	eatr	nen	tS		
			2	0		0	0			1	1	2	3	7
Tyres	1	X	Х	Х	Х					2	1	2	3	6
	2	Х	Х			Х	Х			-		_	-	0
	3	x	x		x	x		x x		3	1	4	5	6
	0		Λ		Λ	Λ				4	1	3	4	5
	4			Х	Х		Х		5	2	3	5	7	
	5			Χ	Х	Χ				0			0	_
	6		X	X			x x	X		6	2	4	6	1
	U		Λ	Λ				Χ		7	4	5	6	7
	7	X				Χ	Χ	Х			l			

■ n treatments, block size k, (k < n)

Any two treatments occur together the same number of times (λ times)

First Solution: $\binom{n}{k}$ blocks, a different combination of treatments in each block.

 $n = 7, k = 4: \binom{7}{4} = \frac{7 \cdot 6 \cdot 5}{3 \cdot 2} = 35$ cars

Search for smaller designs

Necessary conditions for a BIBD

b blocks, each treatment occurs r times

(1)
$$nr = bk$$

(2) $r(k-1) = \lambda(n-1)$

(1) number of observations(2) number of treatment pairs for a fixed treatment

Design is called symmetric if n = b.

Construction of BIBD

- Problem: Given k and n, how large are r,b, and λ ?
- Conditions (1) and (2) are necessary but not sufficient.
- Several methods of construction exist.
- There are tables of BIBD with small sizes (Cochran & Cox 1992).
- Partially balanced block designs (PBIB) if some treatment comparisons are less important.

Statistical model:

$$Y_{ij} = \mu + T_i + \beta_j + \epsilon_{ij}$$

where T_i is the treatment effect, β_j the block effect.

- Block and treatment factor are not orthogonal, because not all combinations appear.
- Calculate first block sum of squares, then adjusted treatment sum of squares.