Split Plot Designs

- Large and small units
- Confounding main effects

Study in Dental Medicine

■ Can measurement of electric resistance help in detecting tooth decay?

- 40 measurements on teeth with and without inflamed gums, with and without special treatment.
$\square 2^{2}$ factorial with factor A (inflammation) and factor B (special treatment).

Correct anova table?

Source	df	MS	F
A	1		$M S_{A} / M S_{\text {res }}$
B	1		$M S_{B} / M S_{\text {res }}$
AB	1		$M S_{A B} / M S_{\text {res }}$
Residual	36		
Total	39		

Depends on design structure. How many subjects, how many teeth?

8 subjects, one tooth each

One treatment per person, 5 repeated measurements

Stratum	Source	df	F
Person	A	1	$M S_{A} / M S_{\text {res-person }}$
	B	1	$M S_{B} / M S_{\text {res-person }}$
	AB	1	$M S_{A B} / M S_{\text {res-person }}$
	Residual	4	
	Total	7	
Measurement	Residual	32	
	Total	39	

5 subjects, 4 teeth each

Each person has 2 inflamed and 2 not inflamed teeth. Each tooth was measured once with special treatment and once without special treatment.

Stratum	Source	df	F
Person	Person	4	
Tooth	A	1	$M S_{A} / M S_{\text {res-tooth }}$
	Residual	14	
	Total	15	
Measurement	B	1	$\begin{gathered} M S_{B} / M S_{\text {res-meas }} \\ M S_{A B} / M S_{\text {res-meas }} \end{gathered}$
	AB	1	
	Residual	18	
	Total	20	
	Total	39	

Special properties of this design

■ Replication on three stages: persons, teeth and measurements.

- One factor varies between teeth, the other between measurements.
■ main plot= tooth, sub-plot = measurement

Split-plot design

- A first factor needs to be applied to large plots, called main plots.
■ Main plots are split into smaller plots, called subplots. Theses are assigned to different levels of a second factor.
- Two different levels for comparing factor levels: effects of the first factor must be examined relative to main plot variation, effects of the second factor must be examined relative to subplot variation.

Rice experiment

4 irrigation methods I1-I4 on main plots, 3 fertilizer mixtures $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ on sub-plots, 2 complete replicates.

Layout:

Block I				Block II			
z	x	y	z	x	y	z	x
x	z	z	y	z	x	x	y
y	y	x	x	y	z	y	z
14	12	3	11	12	11	4	13

Irrigation is confounded with main plots.

Model

$$
\begin{array}{r}
Y_{i j k}=\mu+b_{i}+I r r_{j}+\epsilon_{i j}+\text { Fert }_{k}+(\text { Irr }: \text { Fert })_{j k}+\delta_{i j k} \\
\qquad i=1, \ldots, I ; j=1, \ldots, J ; k=1, \ldots, n .
\end{array}
$$

b_{i} : i th block effect
$I r r_{j}: j$ th effect of irrigation
$\epsilon_{i j}$: main plot error
Fert ${ }_{k}$: k th effect of fertilizer
$(\operatorname{Irr}: F e r t)_{i j}: j k$ th interaction
$\delta_{i j k}:$ sub-plot error

Skeleton Anova

Stratum	Source	df	F
Blocks	Blocks	1	
Main plots	Irr	3	$M S_{\text {Irr }} / M S_{\text {res-main }}$
	Residual	3	
	Total	7	
Sub-plots	Fert	2	$\begin{gathered} M S_{\text {Fert }} / M S_{\text {res-sub }} \\ M S_{\text {Irr }: F e r t} / M S_{\text {res-sub }} \end{gathered}$
	Irr:Fert	6	
	Residual	8	
	Total	16	
	Total	23	

Data on crop yield (tonnes/hectare)

Irrigation

Block I	I1	I2	I3	I4
Fertilizer x	2.16	2.03	1.77	2.44
y	2.38	2.41	1.95	2.63
z	2.77	2.68	2.01	3.12

Irrigation

Block I	I1	I2	I3	I4
Fertilizer x	2.52	2.31	2.01	2.23
y	2.64	2.50	2.06	2.04
z	3.23	2.48	2.09	2.33

Graphical display

Anova Table

```
> mod2=aov(yield~irrigation*fertilizer+Error(block/irrigation))
> summary(mod2)
```

Error: block
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
Residuals 10.00033750 .0003375
Error: block:irrigation
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
irrigation 31.329710 .443242 .04240 .2862
Residuals 30.651050 .21702
Error: Within

Df	Sum Sq	Mean Sq F value	$\operatorname{Pr}(>F)$	
2	0.67530	0.33765	16.6262	0.001414

Some Variations

■ Repeated splitting for a third factor applied to split-split plot

- Confounding interactions of sub-plot factors in split-plot designs
- Other designs for main plots, e.g. Latin squares
- Strip-plot design

Block I Block II

