Solution Exercise 6

1. a) We have:

$$n = 4$$

$$b = 6$$

$$k = 2$$

$$r = \frac{kb}{n} = \frac{12}{4} = 3.$$

$$\lambda = \frac{r(k-1)}{n-1} = 1$$

We find the BIBD: (Note that $\lambda = 1$ implies that any combination of 2 factors can appear just once).

b) We have:

$$n = 7$$

$$b = 7$$

$$k = 3$$

$$r = \frac{kb}{n} = \frac{21}{7} = 3$$

$$\lambda = \frac{r(k-1)}{n-1} = 1$$

We find the BIBD. (Note that $\lambda=1$ implies that any combination of 2 factors can appear just once).

		2	3	4	5	6	7
1	X X X	X	X				
2	X			X	X		
3	X					X	X
4		X		X		X	
5		X			X		X
6			X	X			X
7			X		X	X	

2. We have the following model:

Stratum	Source	d	lf	F
Main plots	Treatment	1		$MS_{TR}/MSres-main$
	Residual	19		
	Total		20	
Sub-plots	Time	1		$MS_{Time}/MSres-sub$
	TR:Time	1		$MS_{TR:Time}/MSres-sub$
	Residual	19		$MS_{TR:Time}/MSres-sub$
	Total		21	
	Total		41	

With the R-function

Sh.fit <- aov(Y Time*Treatment+Error(Subject/Time),data=Sh)</pre>

summary(Sh.fit)

we obtain:

Error: Subject

Df Sum Sq Mean Sq F value Pr(>F)

Treatment 1 847.5 847.48 3.6266 0.07212 .

Residuals 19 4440.0 233.68

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Time 1 542.88 542.88 15.142 0.0009823 ***
Time:Treatment 1 407.41 407.41 11.363 0.0032085 **

Residuals 19 681.21 35.85

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Time and interaction Time: Treatment are significant. A plot also shows that the new treatment improves response values after surgery, whereas the rates are unchanged with a standard operation. The new operation is therefore superior to the standard treatment.

3. Let

A = packing

B = pizza

a) This is a split plot design with persons as main plots and the ratings of different packings as subplots.

Strata	Source	df	MS	F
Person	В	2	MS_B	$MS_B/MS_{res-main}$
	Residual	87	$MS_{res-main}$	
Subplots	A	5	MS_A	$MS_A/MS_{res-sub}$
	AB	10	MS_{AB}	$MS_{AB}/MS_{res-sub}$
	Residual	435	$MS_{res-sub}$	
	Total	539		

b) This is a factorial design.

Source	df	MS	F
A	5	MS_A	MS_A/MS_{res}
В	2	MS_B	MS_B/MS_{res}
AB	10	MS_{AB}	MS_{AB}/MS_{res}
Residual	72	MS_{res}	
Total	89		

c) This is a complete block design with persons as blocks.

Source	df	MS	F
Blocks	89	MS_{blocks}	
\mathbf{A}	5	MS_A	MS_A/MS_{res}
В	2	MS_B	MS_B/MS_{res}
AB	10	MS_{AB}	MS_{AB}/MS_{res}
Residual	1513	MS_{res}	
Total	1619		

4. Using R and the function lm we obtain:

 ${\tt d.st\$coefficients}$

This can be interpreted as follows:

$$\hat{y} = 84.10 - 0.85 \cdot T + 0.25 \cdot P ,$$

By letting \hat{y} constant we obtain an equation for the contour lines, i.e. contour lines satisfy the equation

$$P = \frac{0.85}{0.25} \cdot T + constant = m_0 T + c .$$

The direction of steepest ascent is then:

$$-\frac{1}{m_0} = -\frac{5}{17} \ .$$