Solution Exercise 6

1. a) We have:

$$
\begin{aligned}
n & =4 \\
b & =6 \\
k & =2 \\
r & =\frac{k b}{n}=\frac{12}{4}=3 . \\
\lambda & =\frac{r(k-1)}{n-1}=1
\end{aligned}
$$

We find the BIBD: (Note that $\lambda=1$ implies that any combination of 2 factors can appear just once).

	1	2	3	4
1	x	x		
2	x		x	
3	x			x
4		x	x	
5		x		x
6			x	x

b) We have:

$$
\begin{aligned}
n & =7 \\
b & =7 \\
k & =3 \\
r & =\frac{k b}{n}=\frac{21}{7}=3 . \\
\lambda & =\frac{r(k-1)}{n-1}=1
\end{aligned}
$$

We find the BIBD. (Note that $\lambda=1$ implies that any combination of 2 factors can appear just once).

	1	2	3	4	5	6	7
1	x	x	x				
2	x			x	x		
3	x					x	x
4		x		x		x	
5		x			x		x
6			x	x			x
7			x		x	x	

2. We have the following model:

Stratum	Source	df	F
Main plots	Treatment	1	M $S_{\text {TR }} /$ MSres - main
	Residual	19	
	Total	20	
Sub-plots	Time	1	$\begin{gathered} M S_{\text {Time }} / M \text { Sres }- \text { sub } \\ M S_{\text {TR:Time }} / M \text { Sres }-s u b \\ M S_{\text {TR:Time }} / M \text { Sres }-s u b \end{gathered}$
	TR:Time	1	
	Residual	19	
	Total	21	
	Total	41	

With the R-function
Sh.fit <- aov(Y Time*Treatment+Error (Subject/Time), data=Sh)
summary(Sh.fit)
we obtain:
Error: Subject
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
Treatment $\begin{array}{llllll}1 & 847.5 & 847.48 & 3.6266 & 0.07212 .\end{array}$
Residuals $194440.0 \quad 233.68$

Signif. codes: $0{ }^{\prime} * * *$ ' $0.001^{\prime * *} 0.01^{\prime *} 0.05{ }^{\prime}$, $0.1^{\prime}, 1$

Error: Within

```
            Df Sum Sq Mean Sq F value Pr(>F)
Time 1 542.88 542.88 15.142 0.0009823 ***
Time:Treatment 1 407.41 407.41 11.363 0.0032085 **
Residuals 19 681.21 35.85
---
Signif. codes: \(0{ }^{\prime} * * * ' 0.001{ }^{\prime} * * ' 0.01\) '*' 0.05 '.' 0.1 ' ' 1
```

Time and interaction Time:Treatment are significant. A plot also shows that the new treatment improves response values after surgery, whereas the rates are unchanged with a standard operation. The new operation is therefore superior to the standard treatment.
3. Let

$$
\begin{aligned}
& A=\text { packing } \\
& B=\text { pizza }
\end{aligned}
$$

a) This is a split plot design with persons as main plots and the ratings of different packings as subplots.

Strata	Source	df	MS	F
Person	B	2	MS_{B}	$\mathrm{MS}_{B} / \mathrm{MS}_{\text {res-main }}$
	Residual	87	$\mathrm{MS}_{\text {res-main }}$	
Subplots	A	5	MS_{A}	$\mathrm{MS}_{A} / \mathrm{MS}_{\text {res-sub }}$
	AB	10	$\mathrm{MS}_{A B}$	$\mathrm{MS}_{A B} / \mathrm{MS}_{\text {res-sub }}$
	Residual	435	$\mathrm{MS}_{\text {res-sub }}$	
	Total	539		

b) This is a factorial design.

Source	df	MS	F
A	5	MS_{A}	$\mathrm{MS}_{A} / \mathrm{MS}_{\text {res }}$
B	2	MS_{B}	$\mathrm{MS}_{B} / \mathrm{MS}_{\text {res }}$
AB	10	$\mathrm{MS}_{A B}$	$\mathrm{MS}_{A B} / \mathrm{MS}_{\text {res }}$
Residual	72	$\mathrm{MS}_{\text {res }}$	
Total	89		

c) This is a complete block design with persons as blocks.

Source	df	MS	F
Blocks	89	$\mathrm{MS}_{\text {blocks }}$	
A	5	MS_{A}	$\mathrm{MS}_{A} / \mathrm{MS}_{\text {res }}$
B	2	MS_{B}	$\mathrm{MS}_{B} / \mathrm{MS}_{\text {res }}$
AB	10	$\mathrm{MS}_{A B}$	$\mathrm{MS}_{A B} / \mathrm{MS}_{\text {res }}$
Residual	1513	$\mathrm{MS}_{\text {res }}$	
Total	1619		

4. Using R and the function lm we obtain:
d.st <- lm (formula=Pu T1+Pr1, data=d)
d.st\$coefficients

(Intercept)	T 1	$\operatorname{Pr} 1$
84.10	-0.85	0.25

This can be interpreted as follows:

$$
\hat{y}=84.10-0.85 \cdot T+0.25 \cdot P
$$

By letting \hat{y} constant we obtain an equation for the contour lines, i.e. contour lines satisfy the equation

$$
P=\frac{0.85}{0.25} \cdot T+\text { constant }=m_{0} T+c
$$

The direction of steepest ascent is then:

$$
-\frac{1}{m_{0}}=-\frac{5}{17}
$$

