
M. Müller Applied Analysis of Variance and Experimental Design ETH

Solution Exercise 4

1. Read in the data:

feed <- read.table(file="../feed.txt",header=TRUE)

feed$Feeding <- as.factor(feed$Feeding)

a) Test for differences in treatment without taking into account the initial hormone concen-
tration. Estimate the treatment means.

modF <- aov(Final~Feeding,data=feed)

summary(modF)

Df Sum Sq Mean Sq F value Pr(>F)

Feeding 2 1082.8 541.38 0.6287 0.5404

Residuals 29 24970.9 861.07

TukeyHSD(modF,"Feeding", conf.level=0.95)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Final ~ Feeding, data = feed)

$Feeding

diff lwr upr p adj

2-1 11.555556 -20.40036 43.51147 0.6489302

3-1 14.010101 -18.56238 46.58259 0.5446072

3-2 2.454545 -27.79581 32.70490 0.9781225

b) Carry out a one-way analysis of variance for the differences Di = Yi − xi of hormone
measurements where Yi is the response after the treatment and xi the baseline measurement.

modF2 <- aov((Final-Initial)~Feeding,data=feed)

summary(modF2)

Df Sum Sq Mean Sq F value Pr(>F)

Feeding 2 101.5 50.74 0.1537 0.8582

Residuals 29 9574.4 330.15

c) Include the baseline measurement in the model as a covariate and do an analysis of cova-
riance for the responses Yi. Estimate the adjusted treatment means.

modF3 <- aov(Final~Feeding+Initial,data=feed)

summary(modF3)

Df Sum Sq Mean Sq F value Pr(>F)

Feeding 2 1082.8 541.4 10.447 0.0004079 ***

Initial 1 23520.0 23520.0 453.878 < 2.2e-16 ***

Residuals 28 1451.0 51.8



d) Compare and comment on the different results.
If we test for differences in treatment like in the model of task a) we see that there is no
significant difference between food composition. From the one-way analysis of variance in
b) we see that the factor feeding is not significant. It is even worse than in a). The output
of task c) shows that the factor feeding is quite significant when we take the initial hormone
concentration as a covariate into account.
This is quite clear if we look at the data:
In the first and the second plot we can see that feeding does not provide a significant
difference. But it is obvious that the animals will all grow up between the initial situation
and the final situation for natural reasons. Therefore it makes sense to assume that weight
at the end will be a multiplier of the initial weight plus the effect of the feeding. This can
be checked in plots 3 and 5-8. In all cases the plot differs clearly from the line (this means
the assumption that the only difference in weights is due to the feeding (and the variance)
is not really plausible).
Last we look at the initial division of the animals (plot 4). We can see that animals are
not really divided randomly (in the first group example we have smaller animals). With a
randomized division of the animals we probably would have obtained better results even
for the ANOVA-table.
When designing such a study aim at dividing probands at random into the different groups.
In any case you have to avoid that all probands with a common feature are in the same
group. This could lead to not noticing relevant effects or worse merging effects that do not
exist!

1 2 3

18
0

20
0

22
0

24
0

26
0

28
0

TR

F
in

al

1 2 3

−
20

0
10

20
30

40

TR

F
in

al
−

In
iti

al

1 2 3

19
0

20
0

21
0

22
0

23
0

24
0

TR

In
iti

al

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

190 200 210 220 230 240

18
0

20
0

22
0

24
0

26
0

28
0

Initial

F
in

al



●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

190 200 210 220 230 240

0.
90

1.
00

1.
10

initial

F
in

al
/In

iti
al

●

●

●

●

●

●

●

●

●

190 200 210 220

0.
95

1.
00

1.
05

1.
10

1.
15

Food 1

initial

F
in

al
/In

iti
al

●

●

●

●

●

●

●

●

●

●

●

●

200 210 220 230 240

0.
90

1.
00

1.
10

Food 2

initial

F
in

al
/In

iti
al

●

●

●

●

●

●

●

●

●

●

●

210 215 220 225 230 235 240

0.
90

1.
00

1.
10

Food 3

initial

F
in

al
/In

iti
al

2. We take the first replicate of the dataset softdrinkANOVA.txt, i.e.

score sugar soda water temp

1 159 -1 -1 -1 -1

3 168 1 -1 -1 -1

5 158 -1 -1 1 -1

7 166 1 -1 1 -1

9 175 -1 1 -1 -1

11 179 1 1 -1 -1

13 173 -1 1 1 -1

15 179 1 1 1 -1

17 164 -1 -1 -1 1

19 187 1 -1 -1 1

21 163 -1 -1 1 1

23 185 1 -1 1 1

25 168 -1 1 -1 1

27 197 1 1 -1 1

29 170 -1 1 1 1

31 194 1 1 1 1

We have 16 = 24 observations.
We wants to divide the observations in 16

8 = 2 different blocks such that we have a new
factor (BLOCK) with 2 levels.
Construction of the experiment:
call:

A=sugar-effect

B=soda-effect



C=water-effect

D=temp-effect

E=BLOCK-effect

The values of A,B,C and D are 1 or −1 (or equivalently + or −).
We just have to find the values of the column E to construct our experiment. We know that
E = A ·B ·C ·D (because ABCD confounded) hence, the column BLOCK will be determined
by multiplying the column of A,B,C and D. We let 1 correspond to the first block and 2
correspond to the second block. We obtain:

> softBL

score sugar soda water temp BLOCK

1 159 -1 -1 -1 -1 2

3 168 1 -1 -1 -1 1

5 158 -1 -1 1 -1 1

7 166 1 -1 1 -1 2

9 175 -1 1 -1 -1 1

11 179 1 1 -1 -1 2

13 173 -1 1 1 -1 2

15 179 1 1 1 -1 1

17 164 -1 -1 -1 1 1

19 187 1 -1 -1 1 2

21 163 -1 -1 1 1 2

23 185 1 -1 1 1 1

25 168 -1 1 -1 1 2

27 197 1 1 -1 1 1

29 170 -1 1 1 1 1

31 194 1 1 1 1 2

Note that there is no reason to divide an already performed experiment in different blocks,
but if we have to redo the experiment and can, for example, just test 8 combinations per
day, the above division in blocks is useful.

Now we make an analysis of variance of the data with the block factor:

sB.fit <- aov(score~sugar+soda+water+temp+BLOCK,data=softBL)

> summary(sB.fit)

Df Sum Sq Mean Sq F value Pr(>F)

sugar 1 976.56 976.56 26.1375 0.0004557 ***

soda 1 451.56 451.56 12.0860 0.0059561 **

water 1 5.06 5.06 0.1355 0.7204717

temp 1 315.06 315.06 8.4326 0.0157284 *

BLOCK 1 3.06 3.06 0.0820 0.7804926

Residuals 10 373.63 37.36

We conclude that sugar and soda are relevant at a 1% level (and temperature is relevant
at a 5% level).
If, additionally, we want to compute the 2-way effects we just have to type

aov(score~(sugar+soda+water+temp+BLOCK)^2,data=softBL)

If we want to compute all the n-way effects we just have to type

sB.2k <- aov(score~sugar*soda*water*temp*BLOCK,data=softBL)

In this case 3 and 4-way effects are confounded, it follows that we obtain the same result
as in the previous two function calls.
Furthermore, if we want to do an analysis of variance we can not look at all the 1 and
2-way effects because otherwise we lose all the degrees of freedom for the residuals!



Remark
With sB.2k$coef we can see that the 3 and 4-way effects are confounded (Effects are
market with NA).

3. We have the following:

• 8 = 23 = 2k−l runs,

• 5 two-level factors, thus: k = 5,

• consequently we need l = 5− 3 = 2 ”confounding relations”.

Solution:
STEP 1:
Write down the complete 23 table.

A B C

– – –
+ – –
– + –
+ + –
– – +
+ – +
– + +
+ + +

STEP 2:
Define the ”confounding relations”. (If not specified otherwise confounding relations can be
chosen quite freely).
We try to maximize the resolution without prior information on the dataset and choose: D =
−A ·B and E = −A · C (The − is not necessary, but doing so our first run will be (1)).
We obtain:

A B C D E

– – – – –
+ – – + +
– + – + –
+ + – – +
– – + – +
+ – + + –
– + + + +
+ + + – –

STEP 3:
Now read every row of the matrix marking the factors with + for high level:

A B C D E Treatm.

– – – – – (1)
+ – – + + ade
– + – + - bd
+ + – – + abe
– – + – + ce
+ – + + – acd
– + + + + bcde
+ + + – – abc



Which effects are confounded with each other?
Because l = 2 every effect is confounded with 2l = 22 = 4 effects.
We know: D = −A ·B, so the effects of D and AB are not distinguishable (we write D ∼= AB).

From D ∼= AB and E ∼= AC we get:

• I ∼= ABD ∼= ACE ∼= BCDE

By multiplication we find:

• A ∼= BD ∼= CE ∼= ABCDE

• B ∼= AD ∼= ABCE ∼= CDE

• C ∼= AE ∼= BDE ∼= ABCD

• D ∼= AB ∼= BCE ∼= ACDE

• E ∼= AC ∼= BCD ∼= ABDE

• BC ∼= ED ∼= ABE ∼= ACD

• BE ∼= CD ∼= ABC ∼= AED

Remark
The resolution of the experiment can be calculated as follows: take two effects which are con-
founded and count the number of letters you have. The minimal result you can obtain is the
resolution. In our case:

- B & AD → 3 (letters)

- D & AB → 3 (letters)

- BCD & ACDE → 7 (letters)

- ...

The resolution is 3 (not very high).

Can we improve the resolution by changing the relationships D ∼= AB and E ∼= AC?1

Let us think about it:
We can make 8 observations (7 degrees of freedom). If we want a resolution of 4 there has to be
no confounding between the main effects (with 1 letter) and the 2-way effects (with 2 letters).
Naturally we can not have that A ∼= D or something similar because otherwise the resolution
would be 2. Also we can not have that AB ∼= AC because then B ∼= C. Consequently 3 different
2-way effects can not be confounded all together without having the undesirable consequence
that two main effects are confounded.

Summarising: If we want a resolution of 4:
We have 5 main effects and at least 10/2=5 2-way effect which can NOT be confounded! This
makes 10 in total. There are just 7 degrees of freedom (we can look at most at 7 different
effects), therefore it is impossible to find a structure with resolution 4!

4. a) We have: 8 = 23 = 2n−k observations. Furthermore we have n = 4 different factors and
k = 4− 3 = 1.

1The answer to this question is not required to solve the exercise and it is not trivial.



b) Let us call the effects of ”Side-to-side”, ”Yarn type”, ”Pick density” and ”Air pressure”
A,B,C and D respectively. Then we have

A B C D Treatm. Strength

– – – – (1) 24.50
+ – – + ad 22.05
– + – + bd 24.52
+ + – – ab 25.00
– – + + cd 25.68
+ – + – ac 24.51
– + + – bc 24.68
+ + + + abcd 24.23

with the alias D = ABC.
To find out which terms are aliased together it is enough to multiply the terms by I =
ABCD. So

D = ABC

A = BCD

B = ACD

C = ABD

AB = CD

AC = BD

AD = BC

c) Estimates:

Â =
1

4
(−24.5 + 22.05− 24.52 + 25− 25.68 + 24.51− 24.68 + 24.23) = −0.8975

B̂ =
1

4
(−24.5− 22.05 + 24.52 + 25− 25.68− 24.51 + 24.68 + 24.23) = 0.4225

Ĉ =
1

4
(−24.5− 22.05− 24.52− 25 + 25.68 + 24.51 + 24.68 + 24.23) = 0.7575

D̂ =
1

4
(−24.5 + 22.05 + 24.52− 25 + 25.68− 24.51− 24.68 + 24.23) = −0.5525

ÂB = ĈD =
1

4
(+24.5− 22.05− 24.52 + 25 + 25.68− 24.51− 24.68 + 24.23) = 0.9125

ÂC = B̂D =
1

4
(+24.5− 22.05 + 24.52− 25− 25.68 + 24.51− 24.68 + 24.23) = 0.0875

ÂD = B̂C =
1

4
(+24.5 + 22.05− 24.52− 25− 25.68− 24.51 + 24.68 + 24.23) = −1.0625

d) A factor is significant if its absolute value is larger than 0.35. In this case we have that
A,B,C,D,AB and AD are significant.

e) With the assumption and the calculations of point c) we do not care about the two (or
more)-way-effects.
The effect of A is −0.8975 < 0 which means that by changing the level of the factor A from
low to high we lose strength. Consequently we choose:

Effect Estimate R 0 Best

A -0.8975 < 0 low
B 0.4225 >0 high
C 0.7575 > 0 high
D -0.5525 < 0 low


