Solution to Exercise 1

1. Read in the data:

```
blood <-c(62,60,63,59,63,67,71,64,65,66,68,66,71,67,68,68,56,62,60,61,63,64,63,59)
tr <- c(1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4)
b.data <- data.frame(cbind(blood,tr))
b.data$tr <- as.factor(b.data$tr)
```

a) Plot the data with:

plot(b.data\$tr,b.data\$blood)

We see that the coagulation times vary a lot between different diets whereas the variation within a diet group is quite small.

In addition compute the overall mean and the group means. Do this by hand using a calculator.

overall mean = 64

treatment	group means
A	61
В	66
\mathbf{C}	68
D	61

b) Compute the group sample variances s_i^2 and the pooled estimate of variance MS_{res} . Do this also by hand. For MS_{res} compute first SS_{res} .

$$SS_{res} = 112 \ MS_{res} = 5.6$$

treatment	s_i^2
A	3.333
В	8
$^{\mathrm{C}}$	2.8
D	6.85

c) Compute MS_{treat} and compare it to MS_{res} . Compute MS_{treat} by hand. First compute SS_{treat} and with it MS_{treat} .

$$SS_{treat} = 228 \ MS_{treat} = 76$$

We see that the estimated variance between groups is substantially bigger then the estimated variance within groups. This could indicate an effect of diet on blood coagulation time.

d) Use the R-function aov(....).

20

Residuals

5.6

112

Compare your by hand computed SS_{res} , SS_{treat} , MS_{res} and MS_{treat} with the output of summary(fit.blood).

e) From the output above we see that the diet has an significant effect on blood coagulation time.

F-value =
$$13.571$$

P-value = $4.658 \cdot 10^{-5}$

2. a) The parameters in the one-way analysis of variance model $Y_{ij} = \mu + A_i + \epsilon_{ij}$ with $\sum A_i = 0$

$$\mu = 7.2$$
, $A_1 = -2.1$, $A_2 = -0.9$, $A_3 = 0.7$, $A_4 = 2.3$ and $\sigma^2 = 2.8^2$.

b)
$$E(MS_{res}) = \sigma^2 = 7.84$$
 $E(MS_{treat}) = \sigma^2 + 25 \cdot \frac{\sum_{i=1}^4 A_i^2}{3} = 7.84 + 25 \cdot 3.666 = 99.5066$

Therefore we can conclude that the duration of employment has an effect on the job satisfaction. Because $E(MS_{treat})$ is way larger then $E(MS_{res})$.

3. Read in the data

```
N2 <- c(19.4,32.6,27,32.1,33,18.2,24.6,25.5,19.4,21.7,20.8,20.7,
21,20.5,18.8,18.6,20.1,21.3)
strain <- c(1,1,1,1,1,5,5,5,5,5,5,7,7,7,7,7,7,7)
r.data <- data.frame(cbind(N2,strain))
r.data$strain <- as.factor(b.data$strain)
```

a) Plot the data:

```
plot(r.data$strain,r.data$N2)
```

The variance between strains looks larger than the variance within strains. This could be an indicator for a significant difference of nitrogen contents for different Rhizobium strains.

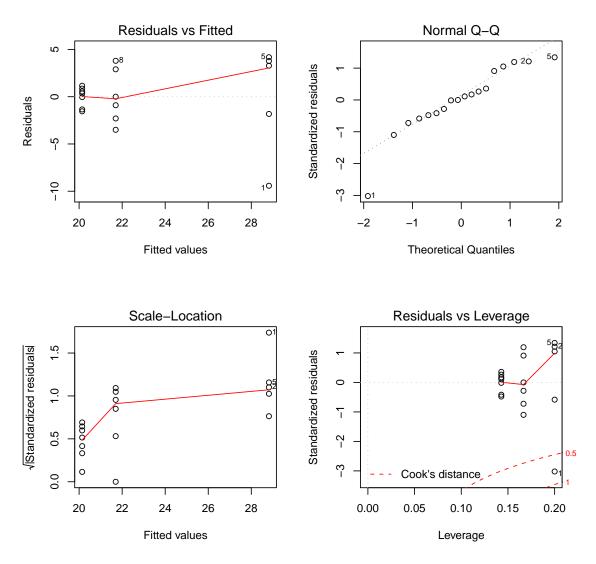
b) Carry out an analysis of variance:

fit.n2 <- aov(r.data\$N2 ~ r.data\$strain)</pre>

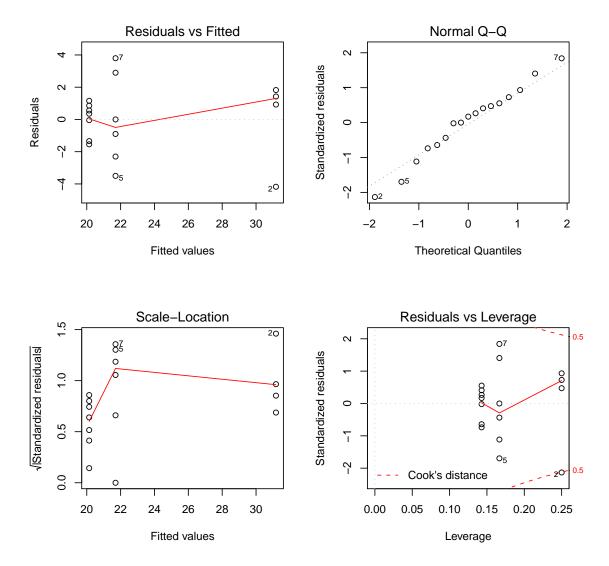
The F-value equals 9.7231. By looking at the P-value (= 0.00195) we see that there are significant differences in nitrogen contents for different strains of Rhizobium.

c) Check the model assumptions:

```
par(mfrow=c(2,2))
plot(fit.n2)
```



From the diagnostic plots we see that there exists an outlier. On the basis of the plots, observation number 1 can be clearly identified as an outlier. After removing the outlier we repeat the analysis.



We see that now the model assumptions are fulfilled.