M. Miiller Applied Analysis of Variance and Experimental Design ETH

Solution to Exercise 1

1. Read in the data:

blood <-c(62,60,63,59,63,67,71,64,65,66,68,66,71,67,68,68,56,62,60,61,63,64,63,59)
tr <- ¢(1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4)

b.data <- data.frame(cbind(blood,tr))

b.data$tr <- as.factor(b.data$tr)

a) Plot the data with:
plot(b.data$tr,b.data$blood)
We see that the coagulation times vary a lot between different diets whereas the variation
within a diet group is quite small.
In addition compute the overall mean and the group means. Do this by hand using a cal-
culator.

overall mean = 64

treatment | group means
A 61
B 66
C 68
D 61

b) Compute the group sample variances 312 and the pooled estimate of variance M S,.s. Do

this also by hand. For M S,.s compute first S5, ¢s.

SSres = 112 M Sres = 5.6

2

d)

treatment s;
A | 3.333
B 8
C 2.8
D| 6.85

Compute M Sireqr and compare it to M S,.s. Compute M Sireqr by hand. First compute
SStreat and with it MStreat‘

SStreat = 228 MStreat =76

We see that the estimated variance between groups is substantially bigger then the esti-
mated variance within groups. This could indicate an effect of diet on blood coagulation
time.
Use the R-function aov(....).
fit.blood <- aov(b.data$blood ~ b.data$tr)
summary (fit.blood)
Df Sum Sq Mean Sq F value Pr(>F)
b.dat$tr 3 228 76.0 13.571 4.658e-05 **x*
Residuals 20 112 5.6



b)

Compare your by hand computed SSyes, SStreat, M Sres and M Sireqtr With the output of
summary (fit.blood).

From the output above we see that the diet has an significant effect on blood coagulation
time.

F-value = 13.571
P-value = 4.658 - 10~°

The parameters in the one-way analysis of variance model Y;; = p+ A; +¢€;; with Y- 4; =0
are:
pu="72 A =-21,A4=-09,43 =0.7, Ay = 2.3 and o2 = 2.8%.
E(MS,c5) = 0% = 17.84
4
E(M Sireqt) = 02 425 - Z’%A? = 7.84 4+ 25 - 3.666 = 99.5066

Therefore we can conclude that the duration of employment has an effect on the job satis-
faction. Because E(M Streqr) is way larger then E(M S, es).

3. Read in the data

N2 <- c(19.4,32.6,27,32.1,33,18.2,24.6,25.5,19.4,21.7,20.8,20.7,

21,20.5,18.8,18.6,20.1,21.3)

strain <- ¢(1,1,1,1,1,5,5,5,5,5,5,7,7,7,7,7,7,7)
r.data <- data.frame(cbind(N2,strain))
r.data$strain <- as.factor(b.data$strain)

a)

b)

Plot the data:
plot(r.data$strain,r.data$N2)
The variance between strains looks larger then the variance within strains. This could be
an indicator for a significant difference of nitrogen contents for different Rhizobium strains.
Carry out an analysis of variance:
fit.n2 <- aov(r.data$N2 ~ r.data$strain)
summary (fit.n2)
Df Sum Sq Mean Sq F value Pr(>F)
r.data$strain 2 236.55 118.275 9.7231 0.001959 x*x
Residuals 15 182.47 12.164
The F-value equals 9.7231. By looking at the P-value (= 0.00195) we see that there are
significant differences in nitrogen contents for different strains of Rhizobium.
Check the model assumptions:
par (mfrow=c(2,2))
plot(fit.n2)
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From the diagnostic plots we see that there exists an outlier. On the basis of the plots,
observation number 1 can be clearly identified as an outlier. After removing the outlier we
repeat the analysis.
rr.data <- r.datal-1,]
fit.n2mod <- aov(rr.data$N2~rr.data$strain)
summary (fit.n2mod)
Df Sum Sq Mean Sq F value Pr (>F)
rr.data$strain 2 333.19 166.60 32.6 5.393e-06 *x*x
Residuals 14 71.54 5.11

par (mfrow=c(2,2))
plot (fit.n2mod)
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We see that now the model assumptions are fulfilled.

Leverage



