
Tutorial (Windows Version)
S.f.Statistik, ETHZ October 5, 2010

This tutorial will give you some brief basic knowledge about R.

R is free software (copyright: GNU public license) and is available from http://stat.

ethz.ch/CRAN/. At this URL you find a comprehensive Documentation, Manual, “An
Introduction to R” (about 100 pages pdf) and a shorter introduction Contributed, “R for
Beginners / R pour les dbutants” (31 pages, english/french).

R-environments
A “professional” way of working with R is to edit R-script files in an editor and to transfer
the written code to a running R process. This can be set up on any platform. Below, we
will describe one possible setting under Windows which was chosen for this exercise class.
However, this is not the only possibility. Depending on which platform you are working
on, we recommend the following:

linux Emacs with the add-on package Emacs Speaks Statistics (http://stat.ethz.ch/
ESS/)

mac The built-in editor is already quite powerful (http://cran.r-project.org/bin/
macosx/)

windows TinnR (http://www.sciviews.org/Tinn-R/) and WinEdt (http://www.winedt.
com/ and http://cran.r-project.org/web/packages/RWinEdt/index.html) both
support R syntax highlighting and direct submission of R code

platform independent Java GUI for R (http://jgr.markushelbig.org/JGR.html) or
Eclipse (http://www.eclipse.org/) with StatEt (http://www.walware.de/goto/
statet/)

Getting started with R
To start R: Start / All Programs / R /R 2.10.1 (or maybe a different version).

Creating and deleting objects
Type in the RConsole:
> x <- 2 <RETURN>

> x <RETURN>

Result: [1] 2

The assignment operator <- has created an object x. R is vector-oriented, so x is a
vector with one element of value 2.

Next try (all functions have to be confirmed by <RETURN>; this is omitted from now on):
> y <- c(3,5) (c for combine)
> y
Result: [1] 3 5, a vector with two elements.

Warning: Do not use names of R-functions as object names, for example: c, t, T, F,
max,

1

ls() shows all objects you have already generated. To remove x, use rm(x).

R-demonstrations
Get a list of all demonstrations with demo(). For example, take a look at the graph-
ics demo of R: demo(graphics). (Keep pressing <RETURN> to browse through the
pictures.)

Working with an .R (script-)file
It is useful to type the functions into a text file of an editor instead of directly typing
them into R. They can then be transferred to R. This procedure enables easy corrections
of typing errors and a reasonable saving and reproduction of the work. We use the built-in
editor.

Now create a new folder RFiles in your home directory.

Open a new script file in the editor, use File / New Script in the R Console. Type
z <- c(8,13,21) as first line and 2*z as second line. Save the file as tutorial.R in the
directory RFiles.

You can send an entire sequence of functions to R by marking the functions with the left
mouse button and clicking on Edit / Send line or selection. Alternatively, you can also
mark a region and type C-r (i.e. press and hold the control key and then press r).

Computing with vectors
Type fib <- c(1,1,2,3,5,z) as third line of tutorial.R (gives the first eight Fibonacci-
numbers). Evaluate this line, and take a look at fib. Type 2*fib+1, fib*fib and log(fib)
as next three lines of tutorial.R. Mark all three lines with the left mouse button and type
C-r. This evaluates all marked lines. Check the results. Do you understand them?

From now on you should write (almost) all R-functions into the *.R-file to evaluate them
from there. At the end, you may save it.

If you open the file next time, mark all the code and type C-r to restore your whole work.

Now create the sequence 2, 4, 6 as object s: s <- 2*(1:3). Take a look at fib[3], fib[4:7],
fib[s], fib[c(3,5)] and fib[-c(3,5)].

Create a vector x with 8 elements, some of which are positive, some negative. Check x > 0
and fib[x > 0].

Matrices: creation and computation
Create two vectors x <- 1:4 and y <- 5:8 and the matrices mat1 <- cbind(x,y) and
mat2 <- rbind(x,y,x+y) (cbind means column-bind, rbind means row-bind). Take a
look at the whole matrices mat1 and mat2 and try mat2[3,2], mat2[2,] und mat2[,1].
You also can define matrices with the function matrix() (mat3 <- matrix(x,nrow=2,ncol=2)).

Computation with matrices using +, * etc. follows the same rules as computation with
vectors, namely elementwise.

For the matrix product, use %*%, e.g. mat2 %*% mat1.

Data Frames
A data frame is a generalized matrix. The main difference between data frames and

2

matrices is that matrices need all elements to be of the same type (e.g. numeric, character),
while data frames allow every column to have another type.

Reading and looking at datasets
ASCII-data is most easily read by read.table, which generates a data frame. read.table
works also for datasets from the web. Try:
stream <- read.table(”http://stat.ethz.ch/Teaching/Datasets/NDK/stream.dat”,

header=TRUE)
The dataset stream contains the concentration of zinc scaled in four levels (variable ZINC)
from different rivers (variable STREAM). In addition the variable DIVERSITY, which de-
picts the species diversity of the river. The variable ZNGROUP encodes the zinc levels
numerically. You may examine the object directly by stream. Single variables are acces-
sible by stream[,”ZINC”]. You may take a look at the original file, in particular its first
line, to understand why R knows the name of the variable. This can be done by calling the
above URL from a web browser, e.g. Firefox or Mozilla. The parameter header=TRUE
of read.table tells R that the variable names are in the first line of the data frame.
stream is a small dataset so it can be displayed by calling it directly, but in general it
is useful to use the str function, which displays the structure and type of an object, but
not all elements: str(stream). We see that the variable ZINC is already identified as a
factor. However the variable ZNGROUP is identified as a continuous variable.

summary(stream) displays information about the columns of stream. summary ex-
tracts the most important information from lots of R-objects, e.g., the results of statistical
tests or model fits.

Graphics
Draw a histogram of the DIVERSITY-values of the stream-data.
par(mfrow = c(1,2)) # Number of pictures one below the other [1] or side by side [2]

important to save paper!
hist(stream[,”DIVERSITY”]) # draw histogram.

Now draw a scatter-plot of the diversity against ZNGROUP:
plot(stream[,”ZNGROUP”],stream[,”DIVERSITY”]) # produces the
scatter-plot.

Compute an analysis of variance in order to test if there is a difference in diversity for
different amounts of zinc: Therefore you first have to change ZNGROUP into a factor.
stream[,”ZNGROUP”] <- as.factor(stream[,”ZNGROUP”])
fit.av <- aov(DIVERSITY ∼ ZNGROUP, data = stream) # ANOVA.
summary(fit.av) # returns the model summary.

In order to check the normality assumptions draw a normal Q-Q plot:
You can extract the residuals of fit.av with resid(fit.av) and the fitted values
with fitted(fit.av).
par(mfrow = c(1,1)) # setting device back to one picture.
qqnorm(resid(fit.av)) # draws the normal Q-Q plot.
qqline(resid(fit.av)) # adds the corresponding diagonal.

3

title(”Titel xy”) adds a title to your graphic and clicking the print button in the
RGraphics window prints the graphic.

Note that there is a distinction between “high-level”- (such as plot, hist) and “low-level”-
graphic functions (such as qqline). The former make up a new graphic, while the latter
add something to existing graphics.

Getting R-help
If you want to know the details about a function, you can use the R-online help. For exam-
ple, help(plot) explains the plot-function. You can execute the example at the end of the
help page by example(plot). Note that it is a good idea to execute par(ask=TRUE)
first, to give you time to observe the graphics. You may check help(par) to understand
the previous advice.

An alternative to the help-function: help.start() starts the html-help of R in a web
browser.

If you look for help about some topic without knowing the function names, e.g. about his-
tograms, help.search(”histogram”) delivers a list of functions which correspond to the
keyword. In parantheses you find the name of the package to which the function belongs.
Most functions used by us in the beginning are contained in the package “base”, which
is automatically loaded. Other packages must be loaded by library(package name),
before their functions and help pages are accessible.

Ending R
You can save your work by saving the script file tutorial.R (see above; it is useful to use
new script files for new projects, e.g. exercise1.R, exercise2.R, . . .). The script has to be
evaluated again to restore your work. R-objects may be saved also by the functions save
and write.

The function q() terminates the R-session. Answer NO to the question
Save workspace?

4

