
A lookback, based on the Lecture Note [1]

May 14, 2007

1 Revisiting Wicksell’s problem

Recall that in Wicksell’s corpuscule problem, the distribution function F to be estimated
was written as

F (x) = 1 − V (x)

V (0)
, (1)

where V is the integral

V (x) =

∫

∞

x

1
√

(z − x)
dG(z) (2)

with respect to the distribution G from which samples are available. Näıve plug-in estimators
Ṽn and F̃n arise from substituting the empirical distribution Gn for G in these formulae.
As 1 and 2 were derived under the assumption that G is absolutely continuous with respect
to Lebesgue measure (i.e. that G has a density g), and the Gn are discrete measures, the
plug-in estimators have bad properties and need to be corrected. One way of performing this
correction is by forcing the plug-in estimator of V (and thus also that of F ) to be monotone,
as V (and F ) should be. This was elaborated on last week, and is illustrated in Figure 1.
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Figure 1: The functions V (left) and F (right) with their plug-in estimators, their isotonic
inverse estimators via least concave majorants, and – for V – the data points used for the
computation of the latter
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Correcting the plug-in estimators in Wicksell’s problem at the level

of G

Another way of obtaining a good estimate of F is to use estimators G̃n of G that are
themselves absolutely continuous, ie. by estimators gn of the density g of G:

Vn(x) =

∫

∞

x

dGn(z)√
z − x

=

∫

∞

x

gn(z)√
z − x

dz

One way of performing this is by kernel estimation using a kernel k(·) and a bandwidth
h. This yields kernel density estimates

gn(z) =
1

nh

n
∑

i=1

k
(z − Zi

h

)

,

where Z1, . . . , Zn are the samples from G underlying the estimation. Thus V is estimated
by

Vn(x) =

∫

∞

x

1√
z − x

· 1

nh

n
∑

i=1

k
(z − Zi

h

)

dz

=
1

nh

n
∑

i=1

∫

∞

x

k
(

z−Zi

h

)

√
z − x

dz .

To carry out this procedure, then, the essential numbers to compute are

Ik(x, z0, h) :=

∫

∞

x

k
(

z−z0

h

)

√
z − x

dz ,

where z0 runs through all the samples Zi and x is non-negative. However, although we can
simplify this expression to

Ik(x, z0, h) := 2

∫

∞

0

k
(z2 + x − z0

h

)

dz ,

it remains fairly non-trivial to compute for the usual kernels, and numerical techniques may
be required.

2 Isotonic Inverse Estimation for Deconvolution Prob-

lem

Let Zi denote an observation equals the sum of two independent random variables Xi and
Yi. We assume that Yi has an known density k and Xi has an unknown distribution function
F . We know that the density of Zi is given by the convolution of the k and F . That is,

g(z) =

∫

�
k(z − x) dF (x) ,

or, equivalently, G(x) =
∫

� K(x− z)dF (z), with K the distribution function of Y . Since we
are interested in then unknown F and k is known, the problem is then the deconvolution
of G with k. This is a type of the inverse problems where the relation between F and G is
available explicitly as an inverse of the convolution. Having an explicit inverse relation of
the distribution of interest F in terms of the sampling distribution G, we can construct a
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plug-in estimator for F via the empirical distribution function. Typically a plug-in estimator
would be based on kernel estimation of g without taking into account the monotonicity of
the function F given by the inverse relation. Hence, we consider an isotonic version as an
estimator for F .

An explicit inverse relation of F in terms of G depends on the density k. The three most
simplest cases are the exponential deconvolution, the uniform deconvolution and the laplace
deconvolution. Below we show that for the above three kernels we obtain an explicit inverse
relation of F .

Exponential deconvolution

Let X be a positive random variable and Y has density k(y) = e−y, for all y ≥ 0. That is,
k is an standard exponential density. Then, from the Lecture Note,

F (x) = g(x) + G(x) .

Uniform deconvolution

Let X be a positive random variable and Y has density k(y) = 1, for all y ∈ [0, 1]. Then,

g(z) =

∫

∞

o

k(z − x)dF (x) =

∫ z

z−1

dF (x) = F (z) − F (z − 1) .

Laplace deconvolution

Let F has a support on
�

and Y has density k(y) = 1

2
exp(−|x|) for all x ∈ �

. Then,

F (x) = G(x) − g′(x) , at the point where F is differentiable .

To see this, note that the standard Laplace has distribution function K(y) equal to 1 −
1

2
exp(−x) for all x > 0 and to 1

2
exp(x) for all x < 0. Thus,

G(x) =

∫

�
K(x − z)dF (z) =

∫ x

−∞

(1 − 1

2
e−x+z dF (z) +

∫

∞

x

1

2
ex−z dF (z)

and

−g′(x) = − d

dx

[

∫ x

−∞

(1/2) e−x+zdF (z) +

∫

∞

x

(1/2) ex−zdF (z)
]

= − d

dx

[

(1/2)e−x

∫ x

−∞

ez dF (z) + (1/2) ex

∫

∞

x

e−z dF (z)
]

=
1

2
e−x

∫ x

−∞

ezdF (z) − 1

2
ex

∫

∞

x

e−zdF (z) .

Hence, G(x) − g′(x) = F (x). The above arguments can be found in, e.g., [2].

Example and Simulation

As an example we consider the exponential deconvolution, where we have the explicit inverse
relation F (x) = g(x) + G(x). Define the convex function

U(x) =

∫ x

0

F (y)dy = G(x) +

∫ x

0

G(y)dy .
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As an estimation for U(x) we define its empirical counterpart

Un(x) = Gn(x) +

∫ x

0

Gn(y)dy

=
1

n

n
∑

i=1

�
(Zi ≤ x) +

1

n

n
∑

i=1

∫ x

0

�
(Zi ≤ y)dy ,

where Gn is the empirical sampling distribution. The function Un is an increasing function
that is linear between successive data points. At these points it has jumps of size 1/n and
after each jump its the slope is increased by 1/n. Clearly Un is not differentiable.

One could consider the piecewise linear function that connects the points (zi, Un(zi)).
The derivative of that function equals to

1

n
(i +

1

zi+1 − zi

)

for x ∈ [zi, zi+1], i = 1, . . . , n, and to 1/(nz1) for x < z1. In general this derivative will not
be monotone. In this case, the isotonic inverse estimator F̂n is defined as the right derivative
of the greatest convex minorant of the function Un. Here, F̂n(0) = 0, limx→∞ F̂n(x) = 1,
F̂n is monotone and right continuous.

We compute an estimate of the distribution function F based on standard exponential
deconvolution. The true distribution is chosen as the standard exponential distribution.
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