An example of a lower- and upper bound

Sara van de Geer Seminar über Statistik, May 14, 2007

Seminar aber Statistik, May 11, 2001

Let Z_1, \ldots, Z_n be i.i.d. observations with distribution G and density g.

Recall the definition of Helliger distance $H(\cdot, \cdot)$: for two densities h_1 and h_2 ,

$$H^{2}(h_{1},h_{2}) := \frac{1}{2} \int \left(\sqrt{h_{1}} - \sqrt{h_{2}}\right)^{2}$$

Suppose now that it is given that $g \in \mathcal{G}$. We are interested in estimating g at a fixed point z_0 . The modulus of continuity for this problem is

$$m(\epsilon) := \sup\{|g(z_0) - h(z_0)| : g, h \in \mathcal{G} : H(g, h) \le \epsilon\}, \ \epsilon > 0$$

We let $\hat{g}_n(z_0)$ denote an estimator of $g(z_0)$ based on Z_1, \ldots, Z_n .

We also recall for this case:

Corollary 3.3.2. Suppose that for some r > 0,

$$\liminf_{\epsilon \downarrow 0} \frac{m(\epsilon)}{\epsilon^r} > 0, \ \epsilon \downarrow 0.$$
(*)

Then

$$\liminf_{n \to \infty} n^{r/2} \sup_{g \in \mathcal{G}} \mathbf{E}_g |\hat{g}_n(z_0) - g(z_0)| > 0.$$

Example. Let

$$\mathcal{G} = \{g: [0,1] \rightarrow [0,\infty), g \uparrow, \int g = 1\}.$$

We will show that, (*) holds with r = 2/3. Thus, the lower bound is of order $n^{-1/3}$.

The upper bound turns out to be of the same order, and it is achieved by the maximum likelihood estimator. To sketch the proof, we will consider a subclass

 $\mathcal{H}\subset\mathcal{G},$

of the form

$$\mathcal{H} := \{ h_{\theta} : 0 \le \theta \le 1/2 \}.$$

We will sketch the following result: if the density g of the observations is equal to $h_0 \in \mathcal{H}$, then the maximum likelihood estimator over \mathcal{H} of $g(z_0)$ converges in probability with rate $n^{-1/3}$. We will also indicate how this extends to the nonparametric maximum likelihood estimator over \mathcal{G}