Inverse problems in Statistics Chapter 7: Asymptotic distribution theory

Bruno Gagliano

June 20, 2007

7.2 Plug-in: Wicksell

Recall quickly the plug-in estimator for the function V in Wicksell's problem. Given an i.i.d sequence Z_{1}, Z_{2}, \ldots of squared circle radii, the plug in estimator for the function V based on $Z_{1}, Z_{2}, \ldots, Z_{n}$ is defined by

$$
\tilde{V}_{n}(x)=\int_{(x, \infty)}(z-x)^{-1 / 2} d G_{n}(z)=\frac{1}{n} \sum_{i=1}^{n}\left(Z_{i}-x\right)^{-1 / 2} 1_{(x, \infty)}\left(Z_{i}\right),
$$

for each $x \geq 0$.
The goal of this subsection is to find a the asymptotic distribution of the plug-in estimator V_{n} for the distribution function. We will see that

$$
\sqrt{\frac{n}{\log n}}\left(\tilde{V}_{n}(x)-V(x)\right) \xrightarrow{\mathcal{D}} \mathcal{N}(0, g(x)) .
$$

In section 6.2 we saw that this estimator is pointwise consistent by the strong law of large numbers:

$$
\tilde{V}_{n}(x)=\int_{(x, \infty)} \frac{d G_{n}(z)}{\sqrt{z-x}} \longrightarrow \int_{(x, \infty)} \frac{d G(z)}{\sqrt{z-x}}=V(x)
$$

for each $x \geq 0$, as $n \rightarrow \infty$.
Now we fix x and note that

$$
\tilde{V}_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} Y_{i},
$$

where

$$
Y_{i}=\frac{1_{(x, \infty)}\left(Z_{i}\right)}{\sqrt{Z_{i}-x}}
$$

Now suppose that x is a point such that g is strictly positive in a neighbourhood of x. Then $\operatorname{Var}\left(Y_{i}\right)=\infty$. Further, consider the random variable Y and note that

$$
P[Y>y]=P\left[Z>x \wedge Z<x+y^{-2}\right]=G\left(x+y^{-2}\right)-G(x)
$$

so that the r.v. Y has a point mass of $G(x)$ at zero, i.e.

$$
P[Y \leq y]=1-P[Y>y]=1-\underbrace{G\left(x+y^{-2}\right)}_{\rightarrow 1(y \rightarrow 0)}+G(x) \longrightarrow G(x)(y \rightarrow 0)
$$

Y has a density of

$$
h(y)=\frac{d}{d y} H(y)=\frac{d}{d y}\left(1-G\left(x+y^{-2}\right)+G(x)\right)=2 y^{-3} g\left(x+y^{-2}\right) .
$$

The variance of Y therefore again is $\operatorname{Var}(Y)=\infty$.
This is rather inconvenient, since the classical CLT cannot be used since it requires finite variance. However, there is a solution to our problem, stated in the following lemma

Lemma 7.1. 7.2.1 Let Y_{1}, Y_{2}, \ldots be i.i.d. with distribution function H. Denote by Φ the standard normal distribution function. Then

$$
\lim _{n \rightarrow \infty} P\left[\frac{1}{B_{n}} \sum_{i=1}^{n} Y_{i}-A_{n}<x\right]=\Phi(x)
$$

for some $B_{n}>0$ and A_{n}, iff

$$
\lim _{c \rightarrow \infty} \frac{c^{2} \int_{|y|>c} d H(y)}{\int_{|y|<c} y^{2} d H(y)}=0 .
$$

If this condition holds, the normalising sequences may be chosen as

$$
B_{n}=\sup \left\{c: c^{-2} \int_{|y|<c} y^{2} d H(y) \geq 1 / n\right\}
$$

and

$$
A_{n}=\frac{n}{B_{n}} \int_{|y|>c} y d H(y)
$$

Now we apply the above lemma to our situation. We have

$$
\int_{|y|>c} d H(y)=P[Y>c]=G\left(x+c^{-2}\right)-G(x)
$$

such that $c^{2} \int_{|y|>c} d H(y)$ tends to $g(x)$ as $c \rightarrow \infty$. The denominator $\int_{|y|<c} y^{2} d H(y)$ can be written as

$$
\begin{aligned}
\int_{|y|<c} y^{2} d H(y) & =\int_{0}^{c} y^{2} h(y) d y=\int_{0}^{c} 2 y^{-1} g\left(x+y^{-2}\right) d y \\
& =\int_{0}^{1} 2 y^{-1} g\left(x+y^{-2}\right) d y+\int_{1}^{c} 2 y^{-1} g\left(x+y^{-2}\right) d y
\end{aligned}
$$

The first term is finite since, changing variables $y^{-2} \rightarrow u$

$$
2 \int_{0}^{1} y^{-1} g\left(x+y^{-2}\right) d y=\int_{1}^{\infty} \frac{g(x+u)}{u} d u \leq \int_{0}^{\infty} g(u) d u=1 .
$$

For the second term, using that g is continuous at x,

$$
2 \int_{1}^{c} y^{-1} g\left(x+y^{-2}\right) d y \sim 2 g(x) \log c .
$$

This satisfies the condition in the lemma. Using the expressions for B_{n} and A_{n} given in the lemma we see that we may take

$$
B_{n}=\sqrt{g(x) n \log n} \quad \text { and } \quad A_{n}=\sqrt{\frac{n}{g(x) \log n}} V(x) .
$$

This shows that

$$
\sqrt{\frac{n}{\log n}}\left(\tilde{V}_{n}(x)-V(x)\right) \xrightarrow{\mathcal{D}} \mathcal{N}(0, g(x)) .
$$

7.5 A worked example

In this section we will derive the asymptotic distribution of the isotonic inverse estimator in the exponential deconvolution problem. In the exponential deconvolution problem we have

$$
U(x)=G(x)+\int_{0}^{x} G(x) d x \quad \text { and } \quad U_{n}(x)=G_{n}\left(x^{-}\right)+\int_{0}^{x} G_{n}(x) d x
$$

where G_{n} is the empirical distribution function based on the first n random variables of an i.i.d. sequence generated by the density

$$
g(z)=\int_{0}^{z} e^{x-z} d F(x)
$$

with corresponding distribution function $G . G_{n}\left(x^{-}\right)$stands for $\lim _{y \uparrow x} G_{n}(y)$. The choice of $G_{n}\left(x^{-}\right)$instead of $G_{n}(x)$ does not influence the convex minorant and its derivative. The estimator $\tilde{F}_{n}(x)$ is the right derivative of the convex minorant of U_{n} evaluated at x. The goal in this example is to show that

$$
n^{1 / 3} f(x)^{-1 / 3} g(x)^{-1 / 3} 2^{-2 / 3}\left(\tilde{F}_{n}(x)-F(x)\right) \xrightarrow{\mathcal{D}} \operatorname{argmin}_{t \in \mathbb{R}}\left(W(t)+t^{2}\right),
$$

where f is the density of the distribution function F, g is the density of the distribution function G and W is the standard Brownian Motion.
Now fix $x>0$ such that $F^{\prime}(y)=f(y)$ for a continuous, strictly positive f.
From lemma 7.3.1 it follows that

$$
\delta_{n}^{-1}\left(\tilde{F}_{n}(x)-F(x)\right)<v \Longleftrightarrow \operatorname{argmin}_{s}^{-} Z_{n}(s)>0
$$

where

$$
Z_{n}(s)=W_{n}(s)+D_{n}(s)-v s .
$$

Our goal for now is to investigate $\operatorname{argmin}_{s}^{-} Z_{n}(s)$. To that purpose we have a closer look at $W_{n}(s)$ and $D_{n}(s)$. For $s>0$

$$
\begin{aligned}
W_{n}(s) & =\delta_{n}^{-2}\left(U_{n}\left(x+\delta_{n} s-U_{n}(x)-U\left(x+\delta_{n} s\right)+U(x)\right)\right. \\
& =\delta_{n}^{-2} \int_{] x, x+\delta_{n} s\right]} d\left(G_{n}-G\right)(z)+\delta_{n}^{-2} \int_{\left.\jmath x, x+\delta_{n} s\right]}\left(G_{n}(z)-G(z)\right) d z
\end{aligned}
$$

and

$$
\begin{aligned}
D_{n}(s) & =\delta_{n}^{-2}\left(U\left(x+\delta_{n} s-U(x)-F(x) \delta_{n} s\right)\right. \\
& =\delta_{n}^{-2} \int_{x}^{x+\delta_{n} s}(F(y)-F(x)) d y=\frac{1}{2} f(x) s^{2}+R_{n}(s)
\end{aligned}
$$

where $R_{n} \downarrow 0$ uniformly on compacta, when $\delta_{n} \downarrow 0$. The case $s<0$ proceeds analogously and will not be shown here.
Now we need to determine the rate of δ_{n}, such that W_{n} does not become asymptotically degenerate. This is equivalent to saying that W_{n} must be of $O_{P}(1)$. The second term of W_{n} is of $\delta_{n}^{-1} n^{-1 / 2}$, since $\sup _{x \leq z \leq x+\delta_{n} s}\left|G_{n}(z)-G(z)\right|=O_{P}\left(n^{-1 / 2}\right)$, as seen in chapter 6. The first term is an increment of the empirical process over an interval of length $\delta_{n} s$, multiplied by $n^{-1 / 2} \delta_{n}^{-2}$. This will therefore be $O_{P}\left(\delta^{-3 / 2} n^{-1 / 2}\right)$. The first term dominates the second one, and to make W_{n} asymptotically non degenerate we need $\delta_{n} \sim n^{-1 / 3}$.
We now study W_{n} with $\delta_{n} \sim n^{-1 / 3}$

$$
\begin{aligned}
W_{n}(s) & =n^{2 / 3} \int_{\left.\mid x, x+n^{-1 / 3} s\right]} d\left(G_{n}-G\right)(z)+n^{2 / 3} \int_{\left.\mid x, x+n^{-1 / 3} s\right]}\left(G_{n}(z)-G(z)\right) d z \\
& =n^{2 / 3} \int_{\left.\mid x, x+n^{-1 / 3} s\right]} d\left(G_{n}-G\right)(z)+R_{n}^{(2)}(s),
\end{aligned}
$$

where for each $K<\infty$

$$
\sup _{0 \leq s \leq K} R_{n}^{(2)}(s) \leq n^{2 / 3} n^{-1 / 3} K\left\|G_{n}-G\right\|_{\infty}=O_{P}\left(n^{-1 / 6}\right),
$$

as $n \rightarrow \infty$. Using the theorem (7.4.2) for each $K<\infty$

$$
W_{n} \rightsquigarrow \sqrt{g(x)} W \text { in } l^{\infty}([-K, K]),
$$

where W is the two-sided Brownian Motion on \mathbb{R}. Therefore,

$$
Z_{n} \rightsquigarrow Z \text { in } l^{\infty}([-K, K]) .
$$

Here:

$$
Z(s)=\sqrt{g(x)} W(s)+\frac{1}{2} f(x) s^{2}-v s
$$

Since $\operatorname{Var}(Z(s)-Z(t)) \neq 0$ for all $s \neq t$ the process Z has a.s. a unique minimiser. We will call this minimiser

$$
\hat{h}:=\operatorname{argmin}_{s} Z(s) .
$$

The next step in establishing the asymptotic distribution of $\tilde{F}(x)$ is to show the tightness of the argmins. To this end we will apply theorems (7.4.3) and (7.4.4). The result of these applications is

$$
\hat{\theta}_{n}=\operatorname{argmin}_{\theta}^{-} \mathbb{M}_{n}(\theta)=O_{P}\left(n^{-1 / 3}\right),
$$

where

$$
\begin{aligned}
\mathbb{M}_{n}(\theta) & =U_{n}(x+\theta)-U_{n}(x)-\theta F(x)-v \theta n^{-1 / 3} \\
& =\int_{0}^{x+\theta}(1+x-\theta-z) d G_{n}(z)-\int_{0}^{x+}(1+x-z) d G_{n}(z)-\theta F(x)-v \theta n^{-1 / 3}
\end{aligned}
$$

and

$$
\mathbb{M}(\theta)=U(x+\theta)-U(x)-\theta F(x)
$$

$\theta_{0}=0$, and $\mathbb{M}_{n}(0)=\mathbb{M}(0)=0$.
Since

$$
Z_{n}(t)=n^{2 / 3} \mathbb{M}_{n}\left(n^{-1 / 3} t\right),
$$

this means that

$$
\hat{h}_{n}=\operatorname{argmin}_{h}^{-} Z_{n}(h)=O_{P}(1) .
$$

This establishes the uniform tightness of \hat{h}_{n}, which here simply means that the \hat{h}_{n} are bounded. Now - finally - theorem (7.4.1) can be used to conclude that

$$
\hat{h}_{n} \xrightarrow{\mathcal{D}} \hat{h}=\operatorname{argmin}_{s} \sqrt{g(x)} W(s)+\frac{1}{2} f(x) s^{2} .
$$

Using the scaling property of Brownian motion, we see that for each $a>0$ and $b \in \mathbb{R}$

$$
\operatorname{argmin}_{t \in \mathbb{R}}\left(a W(t)+(t-b)^{2}\right) \stackrel{\mathcal{D}}{=} a^{2 / 3} \operatorname{argmin}_{t \in \mathbb{R}}\left(W(t)+t^{2}\right)+b
$$

implying that

$$
\operatorname{argmin}_{t \in \mathbb{R}}\left(\sqrt{g(x)} W(t)+\frac{1}{2} f(x) t^{2}-v t\right) \stackrel{\mathcal{D}}{=} \frac{g(x)^{1 / 3} 2^{2 / 3}}{f(x)^{2 / 3}} \operatorname{argmin}_{t \in \mathbb{R}}\left(W(t)+t^{2}\right)+\frac{v}{f(x)}
$$

using the fact that the argmin function is invariant under multiplication by $c>0$ and addition of any $d \in \mathbb{R}$. Hence

$$
\lim _{n \rightarrow \infty} P\left[n^{1 / 3}\left(\tilde{F}_{n}(x)-F(x)\right)<v\right]=P\left[\operatorname{argmin}_{t \in \mathbb{R}}\left(W(t)+t^{2}\right)>-v f(x)^{-1 / 3} g(x)^{-1 / 3} 2^{-2 / 3}\right]
$$

to show that

$$
n^{1 / 3} f(x)^{-1 / 3} g(x)^{-1 / 3} 2^{-2 / 3}\left(\tilde{F}_{n}(x)-F(x)\right) \xrightarrow{\mathcal{D}} \operatorname{argmin}_{t \in \mathbb{R}}\left(W(t)+t^{2}\right) .
$$

