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7.2 Plug-in: Wicksell

Recall quickly the plug-in estimator for the function V in Wicksell’s problem. Given an
i.i.d sequence Z1, Z2, . . . of squared circle radii, the plug in estimator for the function V
based on Z1, Z2, . . . , Zn is defined by

Ṽn(x) =

∫
(x,∞)

(z − x)−1/2dGn(z) =
1

n

n∑
i=1

(Zi − x)−1/21(x,∞)(Zi),

for each x ≥ 0.
The goal of this subsection is to find a the asymptotic distribution of the plug-in estimator
Vn for the distribution function. We will see that√

n

log n

(
Ṽn(x)− V (x)

) D−→ N(0, g(x)).

In section 6.2 we saw that this estimator is pointwise consistent by the strong law of large
numbers:

Ṽn(x) =

∫
(x,∞)

dGn(z)√
z − x

−→
∫

(x,∞)

dG(z)√
z − x

= V (x),

for each x ≥ 0, as n→∞.

Now we fix x and note that

Ṽn(x) =
1

n

n∑
i=1

Yi,

where

Yi =
1(x,∞)(Zi)√
Zi − x

.

Now suppose that x is a point such that g is strictly positive in a neighbourhood of x.
Then V ar(Yi) =∞. Further, consider the random variable Y and note that

P [Y > y] = P [Z > x ∧ Z < x+ y−2] = G(x+ y−2)−G(x),
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so that the r.v. Y has a point mass of G(x) at zero, i.e.

P [Y ≤ y] = 1− P [Y > y] = 1−G(x+ y−2)︸ ︷︷ ︸
→1 (y→0)

+G(x) −→ G(x) (y → 0).

Y has a density of

h(y) =
d

dy
H(y) =

d

dy

(
1−G(x+ y−2) +G(x)

)
= 2y−3g(x+ y−2).

The variance of Y therefore again is V ar(Y ) =∞.
This is rather inconvenient, since the classical CLT cannot be used since it requires finite
variance. However, there is a solution to our problem, stated in the following lemma

Lemma 7.1. 7.2.1 Let Y1, Y2, . . . be i.i.d. with distribution function H. Denote by Φ the
standard normal distribution function. Then

lim
n→∞

P
[ 1

Bn

n∑
i=1

Yi − An < x
]

= Φ(x)

for some Bn > 0 and An, iff

lim
c→∞

c2
∫
|y|>c dH(y)∫

|y|<c y
2dH(y)

= 0.

If this condition holds, the normalising sequences may be chosen as

Bn = sup
{
c : c−2

∫
|y|<c

y2dH(y) ≥ 1/n
}

and

An =
n

Bn

∫
|y|>c

ydH(y)

Now we apply the above lemma to our situation. We have∫
|y|>c

dH(y) = P [Y > c] = G(x+ c−2)−G(x),

such that c2
∫
|y|>c dH(y) tends to g(x) as c→∞. The denominator

∫
|y|<c y

2dH(y) can be
written as ∫

|y|<c
y2dH(y) =

∫ c

0

y2h(y)dy =

∫ c

0

2y−1g(x+ y−2)dy

=

∫ 1

0

2y−1g(x+ y−2)dy +

∫ c

1

2y−1g(x+ y−2)dy.

The first term is finite since, changing variables y−2 → u

2

∫ 1

0

y−1g(x+ y−2)dy =

∫ ∞
1

g(x+ u)

u
du ≤

∫ ∞
0

g(u)du = 1.
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For the second term, using that g is continuous at x,

2

∫ c

1

y−1g(x+ y−2)dy ∼ 2g(x) log c.

This satisfies the condition in the lemma. Using the expressions for Bn and An given in
the lemma we see that we may take

Bn =
√
g(x)n log n and An =

√
n

g(x) log n
V (x).

This shows that √
n

log n

(
Ṽn(x)− V (x)

) D−→ N(0, g(x)).

7.5 A worked example

In this section we will derive the asymptotic distribution of the isotonic inverse estimator
in the exponential deconvolution problem. In the exponential deconvolution problem we
have

U(x) = G(x) +

∫ x

0

G(x)dx and Un(x) = Gn(x−) +

∫ x

0

Gn(x)dx,

where Gn is the empirical distribution function based on the first n random variables of
an i.i.d. sequence generated by the density

g(z) =

∫ z

0

ex−zdF (x)

with corresponding distribution function G. Gn(x−) stands for limy↑xGn(y). The choice
of Gn(x−) instead of Gn(x) does not influence the convex minorant and its derivative.
The estimator F̃n(x) is the right derivative of the convex minorant of Un evaluated at x.
The goal in this example is to show that

n1/3f(x)−1/3g(x)−1/32−2/3
(
F̃n(x)− F (x)

) D−→ argmint∈R
(
W (t) + t2

)
,

where f is the density of the distribution function F , g is the density of the distribution
function G and W is the standard Brownian Motion.
Now fix x > 0 such that F ′(y) = f(y) for a continuous, strictly positive f .
From lemma 7.3.1 it follows that

δ−1
n

(
F̃n(x)− F (x)

)
< v ⇐⇒ argmin−s Zn(s) > 0,

where
Zn(s) = Wn(s) +Dn(s)− vs.

Our goal for now is to investigate argmin−s Zn(s). To that purpose we have a closer look
at Wn(s) and Dn(s). For s > 0

Wn(s) = δ−2
n

(
Un(x+ δns− Un(x)− U(x+ δns) + U(x)

)
= δ−2

n

∫
]x,x+δns]

d(Gn −G)(z) + δ−2
n

∫
]x,x+δns]

(Gn(z)−G(z))dz
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and

Dn(s) = δ−2
n

(
U(x+ δns− U(x)− F (x)δns

)
= δ−2

n

∫ x+δns

x

(
F (y)− F (x)

)
dy =

1

2
f(x)s2 +Rn(s),

where Rn ↓ 0 uniformly on compacta, when δn ↓ 0. The case s < 0 proceeds analogously
and will not be shown here.
Now we need to determine the rate of δn, such that Wn does not become asymptotically
degenerate. This is equivalent to saying that Wn must be of OP (1). The second term
of Wn is of δ−1

n n−1/2, since supx≤z≤x+δns |Gn(z) − G(z)| = OP (n−1/2), as seen in chapter
6. The first term is an increment of the empirical process over an interval of length δns,
multiplied by n−1/2δ−2

n . This will therefore be OP (δ−3/2n−1/2). The first term dominates
the second one, and to make Wn asymptotically non degenerate we need δn ∼ n−1/3.
We now study Wn with δn ∼ n−1/3

Wn(s) = n2/3

∫
]x,x+n−1/3s]

d(Gn −G)(z) + n2/3

∫
]x,x+n−1/3s]

(Gn(z)−G(z))dz

= n2/3

∫
]x,x+n−1/3s]

d(Gn −G)(z) +R(2)
n (s),

where for each K <∞

sup
0≤s≤K

R(2)
n (s) ≤ n2/3n−1/3K‖Gn −G‖∞ = OP (n−1/6),

as n→∞. Using the theorem (7.4.2) for each K <∞

Wn  
√
g(x)W in l∞([−K,K]),

where W is the two-sided Brownian Motion on R. Therefore,

Zn  Z in l∞([−K,K]).

Here:

Z(s) =
√
g(x)W (s) +

1

2
f(x)s2 − vs

Since V ar
(
Z(s)− Z(t)

)
6= 0 for all s 6= t the process Z has a.s. a unique minimiser. We

will call this minimiser
ĥ := argminsZ(s).

The next step in establishing the asymptotic distribution of F̃ (x) is to show the tightness
of the argmins. To this end we will apply theorems (7.4.3) and (7.4.4). The result of these
applications is

θ̂n = argmin−θ Mn(θ) = OP (n−1/3),
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where

Mn(θ) = Un(x+ θ)− Un(x)− θF (x)− vθn−1/3

=

∫ x+θ

0

(1 + x− θ − z)dGn(z)−
∫ x+

0

(1 + x− z)dGn(z)− θF (x)− vθn−1/3

and
M(θ) = U(x+ θ)− U(x)− θF (x),

θ0 = 0, and Mn(0) = M(0) = 0.
Since

Zn(t) = n2/3Mn(n−1/3t),

this means that
ĥn = argmin−hZn(h) = OP (1).

This establishes the uniform tightness of ĥn, which here simply means that the ĥn are
bounded. Now - finally - theorem (7.4.1) can be used to conclude that

ĥn
D−→ ĥ = argmins

√
g(x)W (s) +

1

2
f(x)s2.

Using the scaling property of Brownian motion, we see that for each a > 0 and b ∈ R

argmint∈R
(
aW (t) + (t− b)2

) D
= a2/3argmint∈R

(
W (t) + t2

)
+ b

implying that

argmint∈R
(√

g(x)W (t) +
1

2
f(x)t2 − vt

) D
=
g(x)1/322/3

f(x)2/3
argmint∈R

(
W (t) + t2

)
+

v

f(x)

using the fact that the argmin function is invariant under multiplication by c > 0 and
addition of any d ∈ R. Hence

lim
n→∞

P
[
n1/3

(
F̃n(x)− F (x)

)
< v
]

= P
[
argmint∈R

(
W (t) + t2

)
> −vf(x)−1/3g(x)−1/32−2/3

]
to show that

n1/3f(x)−1/3g(x)−1/32−2/3
(
F̃n(x)− F (x)

) D−→ argmint∈R
(
W (t) + t2

)
.
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