Inverse problems in Statistics Chapter 7: Asymptotic distribution theory

Bruno Gagliano

June 20, 2007

7.2 Plug-in: Wicksell

Recall quickly the plug-in estimator for the function V in Wicksell's problem. Given an i.i.d sequence Z_1, Z_2, \ldots of squared circle radii, the plug in estimator for the function V based on Z_1, Z_2, \ldots, Z_n is defined by

$$\tilde{V}_n(x) = \int_{(x,\infty)} (z-x)^{-1/2} dG_n(z) = \frac{1}{n} \sum_{i=1}^n (Z_i - x)^{-1/2} \mathbf{1}_{(x,\infty)}(Z_i),$$

for each $x \ge 0$.

The goal of this subsection is to find a the asymptotic distribution of the plug-in estimator V_n for the distribution function. We will see that

$$\sqrt{\frac{n}{\log n}} (\tilde{V}_n(x) - V(x)) \xrightarrow{\mathcal{D}} \mathcal{N}(0, g(x)).$$

In section 6.2 we saw that this estimator is pointwise consistent by the strong law of large numbers:

$$\tilde{V}_n(x) = \int_{(x,\infty)} \frac{dG_n(z)}{\sqrt{z-x}} \longrightarrow \int_{(x,\infty)} \frac{dG(z)}{\sqrt{z-x}} = V(x),$$

for each $x \ge 0$, as $n \to \infty$.

Now we fix x and note that

$$\tilde{V}_n(x) = \frac{1}{n} \sum_{i=1}^n Y_i,$$

where

$$Y_i = \frac{1_{(x,\infty)}(Z_i)}{\sqrt{Z_i - x}}.$$

Now suppose that x is a point such that g is strictly positive in a neighbourhood of x. Then $Var(Y_i) = \infty$. Further, consider the random variable Y and note that

$$P[Y > y] = P[Z > x \land Z < x + y^{-2}] = G(x + y^{-2}) - G(x),$$

so that the r.v. Y has a point mass of G(x) at zero, i.e.

$$P[Y \le y] = 1 - P[Y > y] = 1 - \underbrace{G(x + y^{-2})}_{\to 1(y \to 0)} + G(x) \longrightarrow G(x)(y \to 0).$$

Y has a density of

$$h(y) = \frac{d}{dy}H(y) = \frac{d}{dy}\left(1 - G(x + y^{-2}) + G(x)\right) = 2y^{-3}g(x + y^{-2}).$$

The variance of Y therefore again is $Var(Y) = \infty$.

This is rather inconvenient, since the classical CLT cannot be used since it requires finite variance. However, there is a solution to our problem, stated in the following lemma

Lemma 7.1. 7.2.1 Let Y_1, Y_2, \ldots be i.i.d. with distribution function H. Denote by Φ the standard normal distribution function. Then

$$\lim_{n \to \infty} P\left[\frac{1}{B_n} \sum_{i=1}^n Y_i - A_n < x\right] = \Phi(x)$$

for some $B_n > 0$ and A_n , iff

$$\lim_{c \to \infty} \frac{c^2 \int_{|y| > c} dH(y)}{\int_{|y| < c} y^2 dH(y)} = 0$$

If this condition holds, the normalising sequences may be chosen as

$$B_n = \sup\left\{c: c^{-2} \int_{|y| < c} y^2 dH(y) \ge 1/n\right\}$$

and

$$A_n = \frac{n}{B_n} \int_{|y| > c} y dH(y)$$

Now we apply the above lemma to our situation. We have

$$\int_{|y|>c} dH(y) = P[Y>c] = G(x+c^{-2}) - G(x),$$

such that $c^2 \int_{|y|>c} dH(y)$ tends to g(x) as $c \to \infty$. The denominator $\int_{|y|<c} y^2 dH(y)$ can be written as

$$\begin{aligned} \int_{|y| < c} y^2 dH(y) &= \int_0^c y^2 h(y) dy = \int_0^c 2y^{-1} g(x + y^{-2}) dy \\ &= \int_0^1 2y^{-1} g(x + y^{-2}) dy + \int_1^c 2y^{-1} g(x + y^{-2}) dy \end{aligned}$$

The first term is finite since, changing variables $y^{-2} \rightarrow u$

$$2\int_0^1 y^{-1}g(x+y^{-2})dy = \int_1^\infty \frac{g(x+u)}{u}du \le \int_0^\infty g(u)du = 1.$$

For the second term, using that g is continuous at x,

$$2\int_{1}^{c} y^{-1}g(x+y^{-2})dy \sim 2g(x)\log c.$$

This satisfies the condition in the lemma. Using the expressions for B_n and A_n given in the lemma we see that we may take

$$B_n = \sqrt{g(x)n\log n}$$
 and $A_n = \sqrt{\frac{n}{g(x)\log n}}V(x).$

This shows that

$$\sqrt{\frac{n}{\log n}} \left(\tilde{V}_n(x) - V(x) \right) \xrightarrow{\mathcal{D}} \mathcal{N}(0, g(x)).$$

7.5 A worked example

In this section we will derive the asymptotic distribution of the isotonic inverse estimator in the exponential deconvolution problem. In the exponential deconvolution problem we have

$$U(x) = G(x) + \int_0^x G(x)dx$$
 and $U_n(x) = G_n(x^-) + \int_0^x G_n(x)dx$,

where G_n is the empirical distribution function based on the first n random variables of an i.i.d. sequence generated by the density

$$g(z) = \int_0^z e^{x-z} dF(x)$$

with corresponding distribution function G. $G_n(x^-)$ stands for $\lim_{y \uparrow x} G_n(y)$. The choice of $G_n(x^-)$ instead of $G_n(x)$ does not influence the convex minorant and its derivative. The estimator $\tilde{F}_n(x)$ is the right derivative of the convex minorant of U_n evaluated at x. The goal in this example is to show that

$$n^{1/3}f(x)^{-1/3}g(x)^{-1/3}2^{-2/3}(\tilde{F}_n(x) - F(x)) \xrightarrow{\mathcal{D}} \operatorname{argmin}_{t \in \mathbb{R}}(W(t) + t^2),$$

where f is the density of the distribution function F, g is the density of the distribution function G and W is the standard Brownian Motion.

Now fix x > 0 such that F'(y) = f(y) for a continuous, strictly positive f. From lemma 7.3.1 it follows that

$$\delta_n^{-1} (\tilde{F}_n(x) - F(x)) < v \iff \operatorname{argmin}_s^- Z_n(s) > 0,$$

where

$$Z_n(s) = W_n(s) + D_n(s) - vs.$$

Our goal for now is to investigate $\operatorname{argmin}_{s}^{-}Z_{n}(s)$. To that purpose we have a closer look at $W_{n}(s)$ and $D_{n}(s)$. For s > 0

$$W_n(s) = \delta_n^{-2} \left(U_n(x + \delta_n s - U_n(x) - U(x + \delta_n s) + U(x)) \right)$$

= $\delta_n^{-2} \int_{]x, x + \delta_n s]} d(G_n - G)(z) + \delta_n^{-2} \int_{]x, x + \delta_n s]} (G_n(z) - G(z)) dz$

and

$$D_n(s) = \delta_n^{-2} \left(U(x + \delta_n s - U(x) - F(x) \delta_n s \right) \\ = \delta_n^{-2} \int_x^{x + \delta_n s} \left(F(y) - F(x) \right) dy = \frac{1}{2} f(x) s^2 + R_n(s)$$

where $R_n \downarrow 0$ uniformly on compacta, when $\delta_n \downarrow 0$. The case s < 0 proceeds analogously and will not be shown here.

Now we need to determine the rate of δ_n , such that W_n does not become asymptotically degenerate. This is equivalent to saying that W_n must be of $O_P(1)$. The second term of W_n is of $\delta_n^{-1}n^{-1/2}$, since $\sup_{x \le z \le x + \delta_n s} |G_n(z) - G(z)| = O_P(n^{-1/2})$, as seen in chapter 6. The first term is an increment of the empirical process over an interval of length $\delta_n s$, multiplied by $n^{-1/2}\delta_n^{-2}$. This will therefore be $O_P(\delta^{-3/2}n^{-1/2})$. The first term dominates the second one, and to make W_n asymptotically non degenerate we need $\delta_n \sim n^{-1/3}$. We now study W_n with $\delta_n \sim n^{-1/3}$

$$W_n(s) = n^{2/3} \int_{]x,x+n^{-1/3}s]} d(G_n - G)(z) + n^{2/3} \int_{]x,x+n^{-1/3}s]} (G_n(z) - G(z)) dz$$

= $n^{2/3} \int_{]x,x+n^{-1/3}s]} d(G_n - G)(z) + R_n^{(2)}(s),$

where for each $K < \infty$

$$\sup_{0 \le s \le K} R_n^{(2)}(s) \le n^{2/3} n^{-1/3} K \|G_n - G\|_{\infty} = O_P(n^{-1/6})$$

as $n \to \infty$. Using the theorem (7.4.2) for each $K < \infty$

$$W_n \rightsquigarrow \sqrt{g(x)} W \text{ in } l^{\infty}([-K,K]),$$

where W is the two-sided Brownian Motion on \mathbb{R} . Therefore,

$$Z_n \rightsquigarrow Z \operatorname{in} l^{\infty}([-K, K]).$$

Here:

$$Z(s) = \sqrt{g(x)}W(s) + \frac{1}{2}f(x)s^2 - vs$$

Since $Var(Z(s) - Z(t)) \neq 0$ for all $s \neq t$ the process Z has a.s. a unique minimiser. We will call this minimiser

$$h := \operatorname{argmin}_{s} Z(s).$$

The next step in establishing the asymptotic distribution of $\tilde{F}(x)$ is to show the tightness of the argmins. To this end we will apply theorems (7.4.3) and (7.4.4). The result of these applications is

$$\hat{\theta}_n = \operatorname{argmin}_{\theta}^{-} \mathbb{M}_n(\theta) = O_P(n^{-1/3}),$$

where

$$\mathbb{M}_{n}(\theta) = U_{n}(x+\theta) - U_{n}(x) - \theta F(x) - v \theta n^{-1/3} \\
= \int_{0}^{x+\theta} (1+x-\theta-z) dG_{n}(z) - \int_{0}^{x+} (1+x-z) dG_{n}(z) - \theta F(x) - v \theta n^{-1/3}$$

and

$$\mathbb{M}(\theta) = U(x+\theta) - U(x) - \theta F(x),$$

 $\theta_0 = 0$, and $\mathbb{M}_n(0) = \mathbb{M}(0) = 0$. Since

$$Z_n(t) = n^{2/3} \mathbb{M}_n(n^{-1/3}t),$$

this means that

$$\hat{h}_n = \operatorname{argmin}_h^- Z_n(h) = O_P(1).$$

This establishes the uniform tightness of \hat{h}_n , which here simply means that the \hat{h}_n are bounded. Now - finally - theorem (7.4.1) can be used to conclude that

$$\hat{h}_n \xrightarrow{\mathcal{D}} \hat{h} = \operatorname{argmin}_s \sqrt{g(x)} W(s) + \frac{1}{2} f(x) s^2.$$

Using the scaling property of Brownian motion, we see that for each a > 0 and $b \in \mathbb{R}$

$$\operatorname{argmin}_{t \in \mathbb{R}} \left(aW(t) + (t-b)^2 \right) \stackrel{\mathcal{D}}{=} a^{2/3} \operatorname{argmin}_{t \in \mathbb{R}} \left(W(t) + t^2 \right) + b$$

implying that

$$\operatorname{argmin}_{t \in \mathbb{R}} \left(\sqrt{g(x)} W(t) + \frac{1}{2} f(x) t^2 - vt \right) \stackrel{\mathcal{D}}{=} \frac{g(x)^{1/3} 2^{2/3}}{f(x)^{2/3}} \operatorname{argmin}_{t \in \mathbb{R}} \left(W(t) + t^2 \right) + \frac{v}{f(x)}$$

using the fact that the argmin function is invariant under multiplication by c > 0 and addition of any $d \in \mathbb{R}$. Hence

$$\lim_{n \to \infty} P\left[n^{1/3} \left(\tilde{F}_n(x) - F(x)\right) < v\right] = P\left[\operatorname{argmin}_{t \in \mathbb{R}} \left(W(t) + t^2\right) > -vf(x)^{-1/3}g(x)^{-1/3}2^{-2/3}\right]$$

to show that

$$n^{1/3}f(x)^{-1/3}g(x)^{-1/3}2^{-2/3}\left(\tilde{F}_n(x) - F(x)\right) \xrightarrow{\mathcal{D}} \operatorname{argmin}_{t \in \mathbb{R}}\left(W(t) + t^2\right).$$