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5.4. EM algorithm

The Expectation Maximization (EM) Algorithm resembles the problem of the
likelihood function. The difference is that now some data are false or simplistic
missing.

5.4.1. Example

Consider an i.i.d. sample X1, X2, . . . , Xn from the exponential distribution with
density

f(x | Θ) = Θ−1e−x/Θ1(0,inf)(x)

However, only the integer part of the random variables can be observed:
Yi = bXic. The problem is how to estimate Θ > 0 via maximum likelihood from
the sample of Y ′s.
For the current iterate Θ, the following function of Θ′ is determined:

Q(Θ′ | Θ) = E (
∑n

i=1 log f(Xi | Θ′) | Θ, y1, . . . , yn) =
∑n

i=1 Qi(Θ′ | Θ)

To compute the function Q, we denote the conditional density of X given Y
under the distribution with parameter Θ by k:

k(x | y; Θ) = d
dxP (X ≤ x | Y = y; Θ) = e−x/Θ

Θ(e−y/Θ−e−(y+1)/Θ 1[y,y+1)(x)

Therefore,

Qi(Θ′ | Θ) = − log Θ′ − yi+Θ
Θ′ + 1

Θ′(e1/Θ−1)

So, Q(Θ′ | Θ) =
∑n

i=1 Qi(Θ′ | Θ) is maximized at Θ′ = Θ + yn − 1
(e1/Θ−1)

5.4.2. Idea

Generally the EM algorithm can be described in two steps:
Expectation-step(E-step) and the Maximization-step (M-step).
It’s given:

- measure space (X, A, µ1) carrying the complete data X
- second measure space (Y, B, µ2) supporting the incomplete random
vector Y
- measurable mapping T : X → Y
- The space (X, A, µ1) carries a family of probability distributions
{Pθ : θ ∈ Θ} with densities f(· | θ) respect to µ1 for some parameter
set Θ
- The mapping T induces a family of distributions {Rθ = Pθ ×T−1 :
θ ∈ Θ} on (Y, B, µ2) with densities g(· | θ) with respect to µ2.
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Now define

L(θ | y) = log g(y | θ)

the loglikelihood function. We are at the point, to define the two steps.

E-step:
The E-step compute the expectation value of L(θ | y).

Q(θ′ | θ) ≡ E(L(θ | y)) = E(log g(y | θ))

In this formula θ is not a parameter of the function, but θ is a constant which
was till now the best approximation of the parameters of the density function.
Otherwise θ′ is the parameter of the function, which we want to maximize.

M-step:
The algorithmic map is defined as the argmax of the loglikelihood of the com-
plete observations, given the observed data and the current parameter value.

A(θ) ≡ argmaxθ′∈ΘQ(θ′ | θ)

So A(θ) is the better approximation of the parameters of the density function
than θ′.

Now we can use this better approximation A(θ) for E-step and M-step again.

In theory the iterationsstep ends, when A(θ) is equal to the approximation
of the loglikelihood function of the density.
But in practice that can not be reached. For example is one reason that the
floating points are only approximated.
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