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All statements in this short handout are provided for reference and without
proof. For more details see [2].

1 Some convex optimization

Definition 1.1 (Convex cone) A finitely generated convex cone in Rk is a
subset S of Rk such that for given linearly independent vectors ν(1), ν(2), . . . , ν(m)

in Rk (the generators of S) we have:

s ∈ S ⇔ ∃λ1, λ2, . . . λm ≥ 0 such that: s =
m∑

i=1

λiν
(i)

A special case of a finitely generated convex cone is the following:

C =
{
s = (s1, . . . , sn) ∈ Rn | s1 ≤ s2 ≤ . . . ≤ sn

}
Lemma 1.2 Suppose that S is a finitely generated convex cone in Rk and that
φ is convex and continuously differentiable on S. Then ŝ ∈ argmins∈Sφ(s) if
and only if

ŝ ∈ S,∀i ∈ {1, 2, . . . ,m}∇φ(ŝ)T ν(i) ≥ 0, and ∇φ(ŝ)T ŝ = 0

2 Isotonic regression

Definition 2.1 (Isotonic function) Given a set M with a partial order �, a
real-valued function µ on M is called isotonic if:

x � y ⇒ µ(x) � µ(y)

In the special case M = R, � the usual order on the real numbers, an isotonic
function is just a monotone function.

The objective of regression analysis is to describe the behavior of a variate given
one or more covariates. Formally, one is interested in an estimate of the function
µ0(x) = E[Y | X = x ] for some random vector (X, Y ) ∈ R×Rp. The objective
of isotonic regression is the same, but we limit the function µ0 to a given set
of isotonic functions. Given a function µ which is a solution to a regression
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problem, one way of computing its equivalent in an isotonic setting is to just
take the L2-projection of µ into the given set of isotonic functions. Specifically
we will look at the projection of estimates (in specific examples MLEs) into the
space C.

3 Weighted least squares projection onto C
Mastering the following problem will prove extremely useful in the course of our
discussion of the iterative convex minorant algorithm. Given a point u ∈ Rk,
how can one compute the (weighted) least squares projection of u into C? More
specifically, for:

φ(x) =
k∑

i=1

(xi − ui)2wi with wi the weights.

we want to compute argminy∈C φ(y).
Applying Lemma 1.2, one can see that this problem has a nice geometrical
solution. Consider the points,

P0 = (0, 0) and Pi =
( i∑

j=1

wj ,

i∑
j=1

wjuj

)
, j ∈ {1, . . . , k}.

the least squares projection of u into C is now given by the left derivatives of
the convex minorant of those points.

4 The iterative convex minorant algorithm

The optimization problem we want to solve is the following: given a function
φ : Rn → (−∞,∞], compute:

β̂ = argmin
β∈C

φ(β)

where φ satisfies the conditions:

Conditions 4.1 i) φ is convex, continuous and attains its minimum over C
at a unique point x̂.

ii) φ is continously differentiable on the set {x ∈ Rn | φ(x) < ∞}.

Since φ is an arbitrary function, we try to reduce this optimization problem to
an easier case by taking a second order Taylor approximation of it, but instead of
having D be the Hessian matrix, we allow it to be any positive definite diagonal
matrix. Given a point γ ∈ C with φ(γ) < ∞ we have:

φ(β)− φ(γ) = (β − γ)T∇φ(γ) +
1
2
(β − γ)T D(β − γ) + o(‖β − γ‖)

= cγ +
1
2
(β − γ + D−1∇φ(γ))T D(β − γ + D−1∇φ(γ)) + o(‖β − γ‖)
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where cγ does not depend on β. A natural choice at this point is to base the
algorithm on this algorithmic map:

B(γ) = argmin
β∈C

1
2
(β − γ + D−1∇φ(γ))T D(β − γ + D−1∇φ(γ))

that is, choose a starting point β(0), compute β(1) = B(β(0)) and so on, hoping
for convergence. Note that since D is a diagonal matrix, the above optimization
problem is equivalent to finding the weighted least squares projection of β in C
where the weights are the entries on the diagonal of D, and therefore we can
find a solution via the convex minorant as discussed before. This is the main
idea behind the iterative convex minorant algorithm. Unfortunately there are
situations where this does not converge. The approach is still useful however,
as can be seen with the following lemma:

Lemma 4.2 Let φ satisfy the conditions 4.1 and β ∈ C \{β̂} satisfy φ(β) < ∞,
then:

φ(β + λ(B(β)− β)) < φ(β)

for all λ > 0 sufficiently small.

This lemma states that for a given β, B(β) defines a descent direction along
which one can find a β′ such that φ(β′) < φ(β), and thus a way to find the min-
imizer of the convex function φ. Specifically, one can perform a binary search
along the line from β to B(β) to find such a β′. The iterative convex minorant
algorithm with this addition is known as the modified iterative convex mino-
rant algorithm, see Algorithm 1 at the end of this document for a pseudo-code
description of it. Convergence of this is guaranteed by the following theorem:

Theorem 4.3 Let the function φ : Rn → (−∞,∞] satisfy the conditions 4.1
and β(0) ∈ C satisfy φ(β(0)) < ∞. Let the mapping β 7→ D(β) take values in the
set of positive definite n×n diagonal matrices such that β → D(β) is continuous
on the set:

K =
{
β ∈ C | φ(β) ≤ φ(β(0))

}
Then modified iterative convex minorant algorithm converges to β̂.

5 Application: double censoring

We will retrace the simulation performed in [1]. The setting for the dou-
ble censoring problem has been presented in other talks before, so we just
concentrate on the simulation. We generate samples of various sizes from
F (x) =

√
xI[0,1)(x) + I[1,∞), and we choose (T,U) (the interval bounds) uni-

formly distributed on {(t, u) ∈ [0, 1]2 | t < u}. From this data we compute
v1 < v2 < . . . < vl by taking vj = Ti if Xi < Ti; vj = Ti, vj+1 = Ui if
Ti < Xi < Ui and finally vj = Ui if Xi > Ui. Each index in {1, . . . , l} is added
to one of the four sets I1, I2a, I2b and I3, depending on which one of the cases
above holds for vi. Also a mapping k from I2a to I2b is computed, linking each
lower bound in I2a to the corresponding upper bound in I2b. The function to
be minimized is:

φ(β) = − 1
n

(∑
i∈I1

log βi +
∑

i∈I2a

log(βk(i) − βi) +
∑
i∈I3

log(1− βi)
)
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The βi are related to F by βi = F (vi), therefore β ∈ C is ensured. Also
β1 ≥ 0 and βl ≤ 1 need to be satisfied. This holds automatically if 1 ∈ I1

and l ∈ I3, therefore we create 2 artificial points v1 = 0 and vl = 1 and
add the corresponding indices to I1 and I3. Without these additional points
the algorithm would not converge to a meaningful solution, and would choose
βi > 1 for some i, which could lead to a negative value in the logarithm.
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Algorithm 1 Modified iterative convex minorant algorithm
Input:
η > 0: accuracy parameter
ε ∈ (0, 1/2): line search parameter
β(0) ∈ C: initial point satisfying φ(β(0)) < ∞

β := β(0)

while
∣∣∣∑n

i=1 βi
∂

∂βi
φ(β)

∣∣∣ or
∣∣∣∑n

i=1
∂

∂βi
φ(β)

∣∣∣ or min1≤j≤n

∑n
i=j

∂
∂βi

< −η do

ỹ := argminy∈C(y − β + D(β)−1∇φ(β))T D(β)(y − β + D(β)−1∇φ(β))
if φ(ỹ) < φ(β) + ε∇φ(β)T (ỹ − β) then

β := ỹ
else

λ := 1; s := 1/2; z := ỹ
while φ(z) < φ(β) + (1− ε)∇φ(β)T (z − β) (I) or

φ(z) > φ(β) + ε∇φ(β)T (z − β) (II) do
if (I) then

λ := λ + s
end if
if (II) then

λ := λ− s
end if
z := β + λ(ỹ − β)
s := s/2

end while
β := z

end if
end while
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