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1 Plug-in Estimators

The plug-in estimator 6, of § = Q(F) is defined by Q(F,), where

1 n
F(z) = n Z Lix,=a}
i=1

is the empirical distribution function, X; are indipendent identically F-distributed.

1.1 Wicksell’s problem 1

We observe a sample from the density g.
The object of interest is the distribution function F', which can be expressed
as :

where



2 Isotonic inverse estimators

With isotonic inverse estimators we can correct the nonmonotonicity.
Method 1: first the plug-in estimator is computed and afterwards the esti-
mator is projected on the set of monotone functions.

Method 2: project the nonparametric estimator of the sampling distribution
on the set of possible sampling distributions, then the inversion of this pro-
jected estimator yields a distribution function as estimator.

Lemma 2.1 Let 0 < M < oo and ¢ some a.e. continuous nonnegative inte-
grable function on [0, M]. Denote by ® the primitive

ox) = [ o)y
0
of ¢ on [0, M]. Let ®* be the least concave majorant of ® on [0, M], and ¢*

its right deriwative. If ¢* 1s buonded, then, for each bounded decreasing right
continuous function o on [0, M],

]g (02($)“20($)¢($»Ch72ij€ (6 (2)? — 26" (2)(x))da

Consequently, if ¢ is square integrable,

/0 (o0(x) = p(x))*dz > /0 (¢*(x) — p(x))?da

for all such o.

2.1 Wicksell’s problem 11

—~

Up(x) is the primitive of /V\,:,

On(z) = 2 /: VEAG(2) — 2 /:o V7 2dGo(2)

U, is the concave majorant of (7;, and the right continuous evaluation of
the derivative of U,, is the projected inverse estimator for V (the isotonic
inverse estimator for V).



3 Maximum Likelihood estimators

The likelihood function is defined by

I(g) = Zlogg(zi)

where z1, ..., 2, is a given realized sample from density g.

The MLE is defined as the maximizer of [(g) over some class of densities.
The MLE is also an isotonic inverse estimator. We can have two kinds of
complications with the MLE: the next two subsections show cases where MLE

isn’t well defined and the last subsection shows the case of a not uniquely
defined MLE.

3.1 Wicksell’s problem III

Relation between the density g of the observable data Z and the distribution
function V:

Restriction for V:
T

| v =3

The likelihood function can be made infinity, so we change it as following to
solve this problem and be able to maximize it:

(V)= %ilog ( Z w>
i=0 j=i+1 J ‘

New restriction for V:

™

Z Vza(Vi(zic) = Vi) = 5

3.2 Double censoring
Density of the observable data Z:
9(y,8,7) = (F(y)he ()’ (He(y) — Hr(y) () (1 = F(y)hr(y) 7

In this case the likelihood function isn’t well defined, a way out of the problem
is to use the empirical likelihood (:

I(F) =" 6:log F(y;) +7ilog F({yi}) + (1 — & — %) log(1 — F(y;))

i=1



3.3 Interval censoring case 1 problem
Density g of the observable data Z:

g(t,0) = F(t)°(1 — F())'"°h(t)
The likelihood function

A

[(F) = iéi log(F(t;) + (1 — 6;) log(1 — E,(t:)

has multiple maximizers, so we restrict the class of distribution functions
to those that are constant between successive time points to have a unique
MLE.



