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1 Plug-in Estimators

The plug-in estimator θ̃n of θ = Q(F ) is defined by Q(Fn), where

Fn(x) =
1

n

n∑
i=1

1{Xi=x}

is the empirical distribution function, Xi are indipendent identically F -distributed.

1.1 Wicksell’s problem I

We observe a sample from the density g.
The object of interest is the distribution function F , which can be expressed
as :

F (x) = 1− V (x)

V (0)

where

V (x) =

∫ ∞

x

(z − x)−
1
2 g(z)dz

Plug-in estimator for V :

Ṽn(x) =
1

n

n∑
i=1

(Zi − x)−
1
2 1(x,∞)(Zi)
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2 Isotonic inverse estimators

With isotonic inverse estimators we can correct the nonmonotonicity.
Method 1: first the plug-in estimator is computed and afterwards the esti-
mator is projected on the set of monotone functions.
Method 2: project the nonparametric estimator of the sampling distribution
on the set of possible sampling distributions, then the inversion of this pro-
jected estimator yields a distribution function as estimator.

Lemma 2.1 Let 0 < M < ∞ and φ some a.e. continuous nonnegative inte-
grable function on [0, M ]. Denote by Φ the primitive

Φ(x) =

∫ x

0

φ(y)dy

of φ on [0, M ]. Let Φ∗ be the least concave majorant of Φ on [0, M ], and φ∗

its right derivative. If φ∗ is buonded, then, for each bounded decreasing right
continuous function σ on [0, M ],∫ M

0

(σ2(x)− 2σ(x)φ(x))dx ≥
∫ M

0

(φ∗(x)2 − 2φ∗(x)φ(x))dx

Consequently, if φ is square integrable,∫ M

0

(σ(x)− φ(x))2dx ≥
∫ M

0

(φ∗(x)− φ(x))2dx

for all such σ.

2.1 Wicksell’s problem II

Ũn(x) is the primitive of Ṽn,

Ũn(x) = 2

∫ ∞

z=0

√
zdGn(z)− 2

∫ ∞

x

√
z − xdGn(z)

Ũn

∗
is the concave majorant of Ũn, and the right continuous evaluation of

the derivative of Ũn

∗
is the projected inverse estimator for V (the isotonic

inverse estimator for V).
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3 Maximum Likelihood estimators

The likelihood function is defined by

l(g) =
n∑

i=1

log g(zi)

where z1, ..., zn is a given realized sample from density g.
The MLE is defined as the maximizer of l(g) over some class of densities.
The MLE is also an isotonic inverse estimator. We can have two kinds of
complications with the MLE: the next two subsections show cases where MLE
isn’t well defined and the last subsection shows the case of a not uniquely
defined MLE.

3.1 Wicksell’s problem III

Relation between the density g of the observable data Z and the distribution
function V :

g(z) = − 1

π

∫ ∞

z

dV (x)√
x− z

Restriction for V : ∫ ∞

0

√
xdV (x) = −π
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The likelihood function can be made infinity, so we change it as following to
solve this problem and be able to maximize it:

l(V ) =
1

n

n−1∑
i=0

log

(
n∑

j=i+1

V (zi)− V (zj)√
zj − zi

)
New restriction for V :

n∑
i=1

√
zi(V (zi−1)− V (zi)) =

π

2

3.2 Double censoring

Density of the observable data Z:

g(y, δ, γ) = (F (y)hL(y))δ((HL(y)−HR(y))f(y))γ((1− F (y))hR(y))1−γ−δ

In this case the likelihood function isn’t well defined, a way out of the problem
is to use the empirical likelihood l̃:

l̃(F ) =
n∑

i=1

δi log F (yi) + γi log F ({yi}) + (1− δi − γi) log(1− F (yi))
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3.3 Interval censoring case 1 problem

Density g of the observable data Z:

g(t, δ) = F (t)δ(1− F (t))1−δh(t)

The likelihood function

l(F ) =
n∑

i=1

δi log(F̂n(ti) + (1− δi) log(1− F̂n(ti)

has multiple maximizers, so we restrict the class of distribution functions
to those that are constant between successive time points to have a unique
MLE.
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