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1 Minimax lower bounds

1.1 Abstract

For a functional T and a density function g, we want to find a way of describing
the difficulty in estimating Tg. This we do through comparing the expected
value of the loss we would have, when we only know the estimation of Tg at n
fixed points. By finding a lower bound of the minimax risk, we can measure in
some sense how hard this problem is.

1.2 Definitions and Notations

• G density class on (X ,B) measure space

• λ σ-finite measure on (X ,B)

• T functional defined on G

• tn, (n > 1) sequence of measurable function where t : Xn −→ R is an
estimation procedure

• Tn := tn(X1...Xn) random variable with Xi iid ∼ g ∈ G is an estimator
for T ∀ (n > 1)

• Rl(n, tn, g; T ) := Eg⊗n [l(|tn(X) − Tg|)] where

- l is an increasing loss function on [0,∞)

- g⊗n is the n-fold product of density associated with g ∈ G

• We say T
(1)
n is better than T

(2)
n at a point g :⇐⇒

Rl(n, t
(1)
n , g; T ) < Rl(n, t

(2)
n , g; T )

• We define by
MRl(n, tn, g; T ) := sup

g∈G

Rl(n, tn, g; T )

the maximal risk of tn over G
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• We say T
(1)
n is better than T

(2)
n in general :⇐⇒

MRl(n, t
(1)
n , g; T ) < MRl(n, t

(2)
n , g; T )

• We define by

MMRl(n, tn, g; T ) := inf
tn

MRl(n, tn, g; T ) = inf
tn

sup
g∈G

Rl(n, tn, g; T )

the global minimax risk for estimation Tg based on n samples.

- Note that if MMRl(n, tn, g; T ) is finite for some n0 > 1 then (MMRl(n, tn, g; T ))∞n=n0

is a decreasing sequence of positive numbers usually ↓ 0 for n → ∞
If for n → ∞ MMRl(n, tn, g; T ) = Θ(δn) we say that Tg is δn-
estimable with loss function l. δn is called the rate of convergence,
and is a measure for the ill-posedness of the estimation problem (EP).

- Note that for Gn ⊂ G, MMRl(n; T,Gn) 6 MMRl(n; T,G). Where
MMRl(n; T,G) is called the global minimax risk

• For f, h probability densities on (Ω,A) and σ-finite measure µ. The
Hellinger distance H(f, h) between f and h is defined as the square root
of

H2(f, h) =
1

2

∫

X

(
√

f(x) −
√

h(x))2dµ(x) = 1 −
∫

X

√

(f(x)h(x)dµ(x)

1.3 A minimax lower bound Theorem

Lemma 1.1. Let f, h probability densities on (Ω,A) with respect to a dominat-
ing measure µ. Then

(1 −H2(f, h))2 6 1 − (1 − (

∫

f ∧ hdµ)2 6 2

∫

f ∧ hdµ. (1)

Theorem 1.2. Let G,X , T and g ∈ G be defined as above. Let (gn) be a sequence
of densities on G such that

lim sup
n→∞

√
nH(gn, g) 6 τ. (2)

Then

lim inf
n→∞

|Tgn − Tg|−1MMR1(n; T, {g, gn}) >
1

4
e−2τ2

. (3)

Where the loss function l(x) = |x| is denoted in the corresponding risk as
MMR1.

Considering the modulus of continuity of T over G locally at g, with respect
to the Hellinger metric:

m(ε) = sup{|Th− Tg| : h ∈ G and H(h, g) 6 ε} (4)

we get the following two corollaries:
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Corollary 1.3. Let G be a class of densities on X and T a functional on G.
Fix g ∈ G, and let the function m be defined as in (4). Then for each subset Gg

of G containing some Hellinger ball around g’

lim inf
n→∞

m(τ/
√

n)−1MMR1(n; T,Gg) >
1

4
e−2τ2

(5)

for each positive τ .

Corollary 1.4. Let G be a class of densities on X and T a functional on G.
Fix g ∈ G, and let the function m be defined as in (4), allowing an asymptotic
expansion of m

m(ε) = (cε)r(1 − o(1)) as ε ↓ 0

for some positive parameters c and r. Then for each subset Gg in G containing
some Hellinger ball around g,

lim inf
n→∞

n
r

2 MMR1(n; T,Gg) >
1

4
(
1

2
c
√

r)re−
r

2 . (6)

2 The Van Trees Inequality

2.1 Abstract

Another way to measure the minimax risk of estimating a quantity is to consider
the information content of a random variable, that is how much information
about the unknown θ is contained in an X distributed according to gθ. This
leads to the concept of Fisher information. With the intuition that no estimator
can get more about θ out of a sample than it contains, the Van Trees inequality
gives a lower bound.

2.2 Problem

Let G be a convex set of densities on a sample space Ω and g ∈ G, gn ∈ G with
the conditions

(i) lim sup
n→∞

√
nH(gn, g) ≤ τ < ∞

(ii){x : gn(x) > 0} ⊆ {x : g(x) > 0} for large n

(iii) sup
g(x)>0

∣

∣

∣

∣

gn(x) − g(x)

g(x)

∣

∣

∣

∣

→ 0 as n → ∞

Define
gθ := g + θ(gn − g),Gθ := {gθ : θ ∈ [0, 1]}

I will only consider the case where T is a linear functional on G and the loss
function is the L2 loss l(x) = x2. Further assume θ is distributed according to π
which has density function λ(θ) absolutely continuous to the Lebesgue measure
on [0, 1] and λ(0) = λ(1) = 0. tn is an estimator for T .
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2.3 Fisher Information

We define the Fisher information I(θ) as

I(θ) := Eθ

[

(

∂

∂θ
log gθ(x)

)2
]

=

∫

R

(

∂
∂θ

gθ(x)
)2

gθ(x)
dx

and

Ĩ(λ) := E

[

(

∂

∂θ
log λ(θ)

)2
]

=

∫ 1

0

(

∂
∂θ

λ(θ)
)2

λ(θ)
dθ

2.4 Theorem

(Van Trees) [2] For any estimator t̂ absolutely continuous w.r.t. θ we have

E
[

(

t̂(X) − t(θ)
)2

]

≥
(

E
[

∂
∂θ

t(θ)
])2

E[I(θ)] + Ĩ(λ)

Note that this holds under more general conditions than I will cover here, in
particular t need not be linear.

2.5 Van Trees Minimax bound

Inserting the definition of MMR2 and the Fisher information we get

MMR2(n; Tn,Gn) ≥

(

∫ 1

0
∂
∂θ

Tgθλ(θ)dθ
)2

n
∫ 1

0 I(θ)λ(θ)dθ + Ĩ(λ)

Some calculation gives us the following inequality, where (without proof) Ĩ(λ)
takes a minimum of 4π2 (this is π = 3.14..., not the probability associated with
λ):

lim inf
n→∞

(T (gn − g))2
(

8τ2 + 4π2
)

MMR2 ≥ 1

Compare this with the constant 16e4τ2

of Theorem 1.2.

2.6 Example: Exponential distribution

Let G := {gθ : gθ(x) = e
− x

θ

θ
} be a parametrized family of exponential distribu-

tions on [0,∞) and θ > 0. Our aim is to estimate θ =
∫

x · gθ(x)dx.
We can calculate the Hellinger distance

H(gθ, gν) =

∣

∣

∣

√
θ −√

ν
∣

∣

∣

√
θ + ν

The modulus of continuity evaluates to

m(ε) = sup{|δ| : H(θ, θ + δ) ≤ ε} ≈ 2
√

2θε
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Using the Corollary 1.4 , we get (e is Euler’s constant)

lim inf
n→∞

√
nMMR1 ≥ θ

4

√

2

e

For the standard estimator θ̂n := 1
n

∑n
i=1 Xi the constant becomes θ

√

2
π
. So

this estimator is not“optimal” for L1 loss.
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