Exercise Series 2

1. The dataset prostcancer contains medical data measured on 97 men who were about to receive a radical prostatectomy. The aim is to find out how the predictors influence the response **psa**, which is an important indicator for further development of the cancer. The variables are

psa	level of prostate specific antigen (response)
cavol	cancer volume
\mathbf{weight}	prostate weight
age	age of patient
\mathbf{bph}	benign prostatic hyperplasia amount
\mathbf{svi}	seminal vesicle invasion
\mathbf{cp}	capsular penetration
gleason	gleason score
pgg45	percent of Gleason score 4 or 5

Analyze these data by linear regression. Try to find a good model by stepwise variable selection and transformations of the variables (hint: taking logarithms may help). Make use of diagnostic plots such as scatterplots of the response **psa** versus the predictors, as well as residuals versus both the fitted values and the predictors. Try to get an impression about the validity of the model assumptions. Which variables influence the **psa**-level significantly (and in which direction)?

R-hints:

```
## Reading the dataset
prostate <- read.table("http://stat.ethz.ch/Teaching/Datasets/prostcancer.dat",</pre>
                       header = TRUE)
## Fit the full model
prost.full <- lm(psa ~ cavol+weight+age+bph+svi+cp+gleason+pgg45,
                  data = prostate)
## Fit the empty model. This is not very useful in itself, but is required
## as a starting model for stepwise forward variable selection
prost.empty <- lm(psa ~ 1, data = prostate)</pre>
## Backward selection, starting from the full model
            <- step(prost.full, direction = "backward")
prost.bw
## Forward selection, starting from the empty model
            <- step(prost.empty, direction = "forward",
prost.fw
                    scope = psa ~ cavol+weight+age+bph+svi+cp+gleason+pgg45)
## Loading the package for all-subsets regression
library(leaps)
```

pairs(prostate, pch = ".") may be a useful plot. summary summarizes results from lots
of methods (including step and regsubsets).

2. a) The artificial dataset shown in Figure 1 is generated from a mixture of two normal distributions (see part b)). Imagine you wouldn't know anything about the distribution and you'd want to estimate the density by use of a kernel density estimator with Gaussian kernel. Guess a good bandwidth.

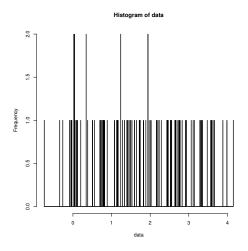


Figure 1: Artificial data from mixture of normal distributions

- **b)** Carry out a simulation with R to evaluate the quality of bandwidths for kernel density estimation for a mixture of normal distributions where a point is generated by a $\mathcal{N}(0, 0.01)$ -distribution with probability 0.2 and by a $\mathcal{N}(2, 1)$ -distribution with probability 0.8. Repeat the following code 200 times for multiple bandwidth values: h = 0.02, 0.1, 0.3, 0.6, 1, 1.5, as well as h equal to your own guess from part a) and to a plug-in estimate of the optimal bandwidth (see below):
 - 1. Generate a dataset of 100 points from the mixture distribution from above:

```
data <- numeric(100)
for(i in 1:100){
    p <- runif(1, min = 0, max = 1)
    if (p < 0.2)
        data[i] <- rnorm(1, mean = 0, sd = sqrt(0.01))
    else
        data[i] <- rnorm(1, mean = 2, sd = 1)
}</pre>
```

2. Compute the kernel density estimator with the function density. Consult help(density) to understand the syntax.

```
ke <- density(data, bw = 0.1, n = 61, from = -1, to = 5)
An estimated plug-in bandwidth is obtained by using bw = "sj".</pre>
```

3. The goodness of the kernel estimate can be measured by averaging the squared difference between the kernel estimator and the true density values at the multiple datapoints -0.2, 0, 0.2, 0.5, 1, 1.5, 2, 2.5, 3, 4: index <- c(9, 11, 13, 16, 21, 26, 31, 36, 41, 51) ke\$x[index] ## -0.2 0.0 0.2 0.5 1.0 1.5 2.0 2.5 3.0 4.0 ## Compute the true density at the given datapoints dmix <- 0.2 * dnorm(ke\$x[index], mean = 0, sd = sqrt(0.01)) + 0.8 * dnorm(ke\$x[index], mean = 2, sd = 1) ## Take the mean of the squared differences quality <- mean((ke\$y[index] - dmix)^2)</pre>

Note that the commands given above are suitable for a single execution, but not necessarily for the full simulation. For example, you will need a vector of the qualities of all simulation runs. You may define a matrix for the qualities to store the results for all different bandwidths. Consider help(matrix), help(apply).

Compute and compare the averaged quality of the kernel estimators for the different kernel functions and bandwidths.

c) (Optional) Repeat the whole project with the Epanechnikov kernel, which can be obtained by specifying kernel="epanechnikov" in density.

Preliminary discussion: Friday, March 30, 2007.

Deadline: Friday, April 13, 2007.

Advice: Contact either Michael Amrein, amrein@stat.math.ethz.ch, or Corinne Dahinden, corinne.dahinden@stat.math.ethz.ch.

Questions concerning R:

- 1. Use clearly structured and well documented script files. If you have questions regarding R code, please also attach a script file with your code to the email. This code must be self-contained (i.e. executable in a new R session).
- 2. Do only attach code which is relevant and needed to understand the problem. Do not attach code for the whole exercise.
- 3. Try to generate simple examples documenting your problem instead of the sometimes large amount of code which is needed to solve the exercise. Simple examples sometimes also help you solving the problem yourselves.