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Exercise Series 10

In this series we are going to explore the dataset vehicle.dat which can be found at
"http://stat.ethz.ch/Teaching/Datasets/NDK/vehicle.dat". The dataset contains 846
observations of 19 variables. The aim is to classify the response (which is named Class) into
four different car types (bus,van,saab,opel) by means of 18 predictors such as compactness,
some information about the car axes and certain length ratios of the cars’ silhouettes.

We are going to use two competing classification methods to fulfill this task, namely CART-trees
with cost-complexity-optimized size and neural networks with variable number of hidden units.
Besides analyzing the classification performance on the vehicle data, we are also interested in
the predictive power of the two methods. To evaluate the generalization error we are going to
do a bootstrap analysis in exercise 2.

For CART the optimal tree size can be found automatically using the methods from package
rpart whereas for neural networks we have to find the optimal number of hidden units our-
selves by performing a 10fold inner cross-validation. To access the methods dealing with neural
networks you need to load the package nnet.

1. a) First of all, generate a classification tree using the methods from rpart. Set the options
cp = 0 and minsplit = 30 such that the resulting tree becomes too large and overfits
the data. To visualize the tree properly you have to make a suitable choice for the
parameters of plot and text. For details look at ?plot.rpart and ?text.rpart. Try
to interpret the tree. Use set.seed(100) for reproducibility.
R-Hints:
library(rpart)
t.formula <- Class ~.
r.rp <- rpart(t.formula,data=???,control=rpart.control(cp=0.0,minsplit=30))
plot(r.rp,???)
text(r.rp,???)

b) Now it comes to pruning the tree from part a). We let rpart perform a cost-complexity-
analysis to find an optimal cp-value by cross-validating a sequence of subtrees of the
tree in a). Read off the optimal cp from the cost-complexity-table (optimality is to be
understood according to the one standard-error rule), visualize the pruned tree with the
optimal cp and finally calculate its misclassification rate.
R-Hints:
# to access the cost-complexity table use:
printcp(r.rp)
# to plot classification error (relative to root tree) vs. subtree size
# (dotted line represents one standard error limit) use:
plotcp(r.rp)
# to prune the tree use method "prune.rpart":
rp.pr <- prune.rpart(r.rp,cp = ???)
# for visualization use "plot" and "text" again:
# for misclassification rate look at:
?residuals.rpart



2
c) Next we want to fit a neural network with variable number of units. To prevent over-

fitting and speed up the optimization process neural networks can be penalized by the
sum of squares of the weights ωi. The regulating proportionality factor is called decay,
because a high decay-value obviously shrinks the weights. Such a shrinkage only makes
sense if the predictors are scaled to the same order of magnitude (usually to have mean 0
and standard deviation 1). Therefore whenever using the decay-option you should scale
your data first. We have already performed for you a search for the optimal decay-
parameter by an inner cross-validation and found dec.opt = 0.0045. It’s left to you
to search for the optimal number of hidden layers size.opt. Write a function that
performs a 10fold inner cross-validation to find size.opt. The maximal size you should
consider is size = 10. Bear in mind that nnet chooses random starting values. This
means that all your nnet-fits should be averaged over, say, nreps = 10 realizations.
Finally, calculate the misclassification rate for the optimal nnet.
R-Hints:
# to scale a data frame look at:
?scale
# always use "trace=FALSE" and optimal decay "decay=dec.opt":
learn <- nnet(Class ~.,data = ???, trace = FALSE, size = ???, decay=dec.opt,...)
# as a prediction result for nnet you get the probabilities for the
# four different factors. Averaging over starting values can be done
# as follows (can be used inside your CV-code):
res <- matrix(0,nrow(data),length(levels(Class)))
for(rep in 1: nreps){

learn <- nnet(Class ~., data = ???, maxit = 500, trace = FALSE, ...)
res[???] <- res[???] + predict(learn, data[???])

}
# number of misclassifications:
sum(as.numeric(Class) != max.col(res/nreps))

d) Next try to illustrate the optimal CART and nnet-fits on a two dimensional cross-
section. To do that we choose the two most selective variables according to the pruned
CART tree from b) and set all other predictors to their mean values. On a 2D-grid we
plot the classification decision boundary lines for the optimal CART tree and for a few
realizations of the optimal nnet and their average as well. You can use the functions
plt, plt.bdy and b1, all stored in the following file:

http://stat.ethz.ch/teaching/lectures/SS_2007/CompStat/CARTnetplots.R.
Try to understand what those functions can do for you (t.ds and t.dsnet stand for
the vehicle and scaled vehicle data respecively) and then invoke them correctly with
the correct arguments. The resulting plots might look a bit strange, this is because
we are only looking at the projections of the high-dimensional vehicle-data onto a
two-dimensional cross-section. Such a plot has to be interpreted with care.
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2. To arrive at a decision wheter CART or neural networks performs better in the vehicle-

setting, compute the bootstrap generalization error for the two methods (see manuscript
p.44). You might want to use the same bootstrap samples for both methods. Because
nnet and rpart are rather slow, you have to restrict yourself to a rather small number of
bootstrap-samples, eg. B=20. Choose nreps=5 for nnet here. Note that it is not the same to
evaluate the predictive performance of the two methods in order to find optimal parameters
in an inner CV-analysis on one hand and for a final full analysis on the other hand. Therefore
this exercise is definitely not redundant.

If you have solved exercise 1, then use the number of layers you have found out to perform
best in exercise 1. If you haven’t solved exercise 1, use 6 layers and a decay value of 0.0045.

Preliminary discussion: Friday, June 08, 2007.

Deadline: Friday, June 15, 2007, at the beginning of the seminar.


