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1 Introduction

In preceding chapters we saw that many censored survival data statistics can be written
as

∑
i

∫
HidMi. Such statistics are martingales, a structure yielding formulas for first

and second moments. In our presentation, we will use these results to explore some
finite-sample properties of estimators of survival and hazard functions. Without mar-
tingale methods, even the computation of first and second moments for these tests and
estimators can be tedious.
We will use the random censorship model, this notion has been presented earlier. In
many applications, especially in clinical research, this is the form of censoring commonly
encoutered. Next remember Thm 1.3.2 from preceding chapter.

• Theorem 1.3.2
Let T and U be failure and censoring variables, and let X = min(T,U), δ = I{T≤U},
N(t) = I{X≤t,δ=1} and NU (t) = I{X≤t,δ=0}.
Define Ft = σ{N(u), NU (u) : 0 ≤ u ≤ t}.
The process M given by

M(t) = N(t)−
∫ t

0
I{X≥u}dΛ(u)

is a martingale with respect to Ft if and only if

dF (z)
1− F (z−)

=
−dP{T ≥ z;U ≥ T}

P{T ≥ z;U ≥ z}
(3.7)

for all z such that P{T ≥ z, U ≥ z} > 0.

• Definition 3.1.1. (Random Censorship Model)
In the random censorship model, the ordered pairs (Tj , Uj), (j = 1, 2, . . . , n) are
n independent finite failure and censoring time random variables that satisfy Eq.
(3.7) in Thm 1.3.2, for each n = 1, 2, . . ..
The observable data are

Xj = min(Tj , Uj) ≡ Tj ∧ Uj

and
δ = I{Xj=Tj}.
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The notation for the underlying distributions in the random censorship model will
be

S(t) = P{Tj > t},

F (t) = 1− S(t),

Cj(t) = P{Uj > t},

Lj(t) = 1− Cj(t),

and
πj(t) = P{Xj ≥ t}.

The following stochastic processes have been introduced in previous chapters:

N(t) ≡
n∑

j=1

Nj(t) ≡
n∑

j=1

I{Xj≤t,δj=1}

NU
j (t) = I{Xj≤t,δj=0}

Y (t) ≡
n∑

j=1

Yj(t) ≡
n∑

j=1

I{Xj≥t}

Mj(t) = Nj(t)−
∫ t

0
Yj(s)dΛ(s)

M(t) =
n∑

j=1

Mj(t) = N(t)−
∫ t

0
Y (s)dΛ(s)

where

Λ(t) =
∫ t

0

1
1− F (s−)

dF (s).

All martingale properties depend on a specification of the way information accrues
over time, i.e. a filtration. Until specified otherwise the filtration {Ft : t ≥ 0} we will
use will be given by

Ft = σ{Nj(s), NU
j (s) : 0 ≤ s ≤ t, j = 1, . . . , n}.

2 Nelson estimator

2.1 Bias of Nelson estimator

We examine methods for estimating the cumulative hazard function Λ(t) of single ho-
mogeneous sample.
From Theorem 1.3.2 ,

Mj(t) = Nj(t)−
∫ t

0
Yj(s)dΛ(s)

is a martingale for each j with respect to {Ft : t ≥ 0}. In turn

Mj(t) = N j(t)−
∫ t

0
Y j(s)dΛ(s)
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is a martingale.

Since the process give at time t by

I{Y (t)>0}

Y (t)
=

{
1

Y (t)
if Y (t) > 0

0 if Y (t) = 0

is a left-continuous adapted process with right-hand limits, {M(t) : t ≥ 0} given by

M(t) =
∫ t

0

I{Y (t)>0}

Y (t)
dM(s) =

∫ t

0

dN(s)
Y (s)

−
∫ t

0
I{Y (s)>0}dΛ(s)

is a martingale. It follow, since M(0) = 0, that

E

∫ t

0

dN(s)
Y (s)

= E

∫ t

0
I{Y (s)>0}dΛ(s). (1)

Let Λ∗(t) =
∫ t
0 I{Y (s)>0dΛ(s)}. Then, if T = inf{t : Y (t) = 0}, Λ∗(t) =

∫ t∧T
0 dΛ(s) =

Λ(t ∧ T ).
By (1), we might expect that

Λ̂(t) ≡
∫ t

0

dN(s)
Y (s)

would be a good ”estimator” for Λ∗(t) = Λ(t ∧ T ), but that it would not be possible to
obtain an unbiased estimator of Λ(t) without making parametric assumptions.

The following theorem summarizes some properties of Λ̂, an estimator first proposed
by Nelson (1969).

• Theorem 3.2.1
Sei t ≥ 0 be such that Λ(t) < ∞. Then

1. E{Λ̂(t)− Λ∗(t)} = 0,

2. E{Λ̂(t)− Λ(t)} = −
∫ t
0 [

∏n
j=1{1− πj(s)}]dΛ(s),

3. if πj(s) = π(s) for all j, then

E{Λ̂(t)− Λ(t)} = −
∫ t

0
{1− πj(s)}ndΛ/(s) ≥ −{1− πj(s)}nΛ(t),

4.

σ2
∗(t) = E[

√
n{Λ̂(t)− Λ∗(t)}]2 = E

[
n

∫ t

0

I{Y (t)>0}

Y (t)
{1−∆Λ(s)}dΛ(s)

]
.

2.2 Variance of Nelson estimator

Suppose πj(s) = π(s) for all j and s. If π(t) > 0, Thm 3.2.1 indicate that Λ̂(t) is
asymptotically unbiased estimator of Λ(t), with bias converging to zero at as exponential
rate as n → 0. For the second moment σ2

∗(t), for large n, should approach

σ2(t) ≡
∫ t

0

1−∆Λ(s)
π(s)

dΛ(s).
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Since En{Λ∗(t)− Λ(t)}2 converges to zero when π(t) > 0, since

√
n{Λ̂(t)− Λ∗(t)} =

1√
n

n∑
j=1

∫ t

0

n

Y (s)
dMj(s),

where {Mj} is an independent and identically distributed collection, and since n{Y (s)}−1

converges to {π(s)}−1, we might expect that
√

n{Λ̂(t) − Λ(t)} is approximately dis-
tributed as N(0, σ2(t)) for large n.

The precision of Λ̂(t) at time t can be measured either by its variance, E{Λ̂(t) −
EΛ̂(t)}2 or, since it is biased, by its mean quared error, E[{Λ̂(t)− Λ(t)}2]
. Since the squared bias satisfies

[E{Λ̂(t)− Λ(t)}]2 ≤ {1− π(t)}2n{Λ(t)}2,

these will be nearly equal, and the variance of Λ̂(t) can be safely used exept when
Λ(t) is large and n is small, or when π(t) is zero.
The variance is given by

varΛ̂(t) = n−1σ2
∗(t)+2E[{Λ̂(t)−Λ∗(t)}{Λ̂(t)−EΛ∗(t)}]+E{Λ∗(t)−EΛ∗(t)}2 ≈ 1

n
σ2
∗(t),

for even relatively small values of n.
In estimating the variance of Λ̂(t), it is therefore sufficient to find a good estimator of
n−1σ2

∗.

• Theorem 3.2.2
Let t ≥ 0 be such that Λ(t) < ∞. Define

1
n

σ̂2(t) =
∫ t

0

I{Y (s)>0}

Y
2(s)

{
1− ∆N(s)− 1

Y (s)− 1

}
dN(s),

where 0
0 ≡ 0 as usual. Then

E

{
1
n

σ̂2(t)− 1
n

σ2
∗(t)

}
=

∫ t

0
P{Y (s) = 1}∆Λ(s)dΛ(s).
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