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1 The Doob-Meyer Decomposition

For a submartingal X it is often possible to find an increasing process A
such that X −A is a martingal.
Using additional restrictions on X and A, A is unique. The unique decom-
position of X = M + A is called the Doob-Meyer decomposition.
Now we examine the conditions on A which are sufficient for the existence
and uniqueness of the Doob-Meyer decomposition. The central condition is
the predictability.

Definition 1 Let (Ω, P, F) be a probability space with filtration {Ft ; t ≥ 0}.
The σ-algebra on [0,∞)× Ω generated by all sets of the form

[0]×A,A ∈ F0,

and
(a, b]×A, 0 ≤ a < b < ∞, A ∈ Fa,

is calles the predictable σ-algebra for the filtration Ft.

Definitions 2 A process X is called predictable with respect to a filtration
if, as a mapping from [0,∞) × Ω to R, it is measurable with respect to the
predictable σ-algebra generated by the filtration. We call X an Ft-predictable
process.

Preposition 1 Let X be an Ft-predictable process. Then ∀t > 0, X(t) is
Ft−-measurable.
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The main use of predictability of a process Q is its Ft−-measurability,
implying

E{Q(t)|Ft−} = Q(t)a.s.

Now we have to introduce an important integrability condition which is

relied in the version of the Doob-Meyer decomposition we use.

Definition 3 A collection of random variables {Xt : t ∈ τ}, where τ is an
arbitrary index set, is uniformly integrable if

lim
n→∞

sup
t∈τ

E(|Xt|1{|Xt|>n}) = 0

The following proposition gives conditions often used to check uniform
integrability.

Preposition 2 The collection {Xt : t ∈ τ} is uniformly integrable if and
only if the following two conditions are satisfied:

1. supt∈τ E|Xt| < ∞

2. For every ε > 0, there exist δ(ε) such that for any set A with P (A) < δ,

sup
t∈τ

∫
A
|Xt|dP < ε

Now we are ready to understand a first version of the Doob-Meyer de-
composition. The version given here is not the most general, since we state
it only for the case of right-continuous, nonnegative submartingales. For
right-continuous submartingales of arbitrary sign, either the submartingal
must satisfy additional regularity condition or the process M will have some-
what less structure than a martingale (i. e. it will be a local martingale, as
we will see later).

Theorem(Doob-Meyer Decomposition) 1 Let X be a right-continuous
nonnegative submartingale with respect to a stochastic basis (Ω,F, {Ft; t ≥ 0}, P ).
Then there exists a right-continuous martingale M and an increasing right-
continuous predictable process A such that EA(t) < ∞ and

X(t) = M(t) + A(t)a.s.

for any t ≥ 0. If A(0)=0 a. s., and if X=M’+A’ is another such decompo-
sition with A’(0)=0, then for any t ≥ 0,

P{M ′(t) 6= M(t)} = 0 = P{A′(t) 6= A(t)}.

If in addition X is bounded, then M is uniformly integrable and A is inte-
grable.
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The decomposition theorem states that for any right-continuous non-
negative submartingale X there is a unique increasing right-continuous pre-
dictable process A such that A(0)=0 and X − A is a martingale. Since
any adapted nonnegative increasing process with finite expectation is a sub-
martingale, there is a unique process A so that for any counting process N
with finite expectation, N − A is a martingale. We summarize this in the
next corollary.

Corollary 1 Let {N(t) : t ≥ 0} be a counting process adapted to a right-
continuous filtration {Ft; t ≥ 0} with EN(t) < ∞ for any t. Then there
exists a unique increasing right-continuous Ft-predictable process A such
that

• A(0)=0 a. s.

• EA(t) < ∞ for any t,

• {M(t) = N(t)−A(t) : t ≥ 0} is a right-continuous Ft-martingale

Definition 4 The process A in the Doob-Meyer decomposition is called the
compensator for the submartingale X.

In theorem 2.2 (part 1) we had, under a sufficient and necessary condition
that

M(t) = N(t)−
∫ t

0
1{X≥u}λ(u)du

is an Ft-martingale. That theorem showed that the integrated conditional
hazard rate is the compensator process for the simple counting process de-
noting the time of an observed failure time subject to censoring.

2 Local Martingales

2.1 Introduction

In this chapter we will work with more general setting then in chapter 1.
First we will explore the idea of localization and its use in extending the
Doob-Meyer decomposition and then we will re-establish the results from
previous chapter for local martingales of the form N −A.

2.2 Localization of stochastic processes and the Doob-Meyer
Decomposition

Definition 1 Let {Ft : t ≥ 0} be a filtration on a probability space. A
nonnegative random variable τ is a stopping time with respect to {Ft} if
{τ ≤ t} ∈ Ft for all t ≥ 0.
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If τ is thought as the time an event occurs, then τ will be a stopping time
if the information in Ft specifies whether or not the event has happened by
time t.

Definition 2 An increasing sequence of random times τn, n=1,2,. . . is called
a localizing sequence with respect to a filtration if the following hold true

1. Each τn is a stopping time relative relative to the filtration

2. limn→∞ τn = ∞ a. s.

A property is said to hold locally for a stochastic process if the property
is satisfied by the stopped process Xn = {X(t ∧ τn) : t ≥ 0} for each n,
where τn form a localizing sequence.

Definition 3 1. A stochastic process M = {M(t) : t ≥ 0} is a local
martingal (submartingale) with respect to the filtration {Ft : t ≥ 0} if
there exists a localizing sequence {τn} such that, for each n, Mn =
{M(t ∧ τn) : 0 ≤ t < ∞} is an Ft-martingale (submartingale).

2. If Mn above is a martingale and a square integrable process, Mn is
called a square integrable martingale and M is called a local square
integrable martingale.

3. An adapted process X = {X(t) : t ≥ 0} is called locally bounded if,
for a suitable localizing sequence {τn}, Xn = {X(t ∧ τn) : t ≥ 0} is a
bounded process for each n.

Lemma 1 Any martingale is a local martingal

Lemma 2 An Ft -local martingal M is a martingal, if for any fixed t,
{M(t ∧ τn) : n = 1, 2, . . .} is a uniformly integrable sequence, where {τn} is
a localizing sequence for M.

We arrive now to the Optional Stopping Theorem, which says that stop-
ping a martingale or a submartingale at a random time does not disturb its
special structure.

Theorem(Optional Stopping Theorem) 1 Let {X(t) : 0 ≤ t < ∞} be a
right-continuous Ft-martingale (respectively, submartingale) and let τ be an
Ft-stopping time. Then {X(t∧τ) : 0 ≤ t < ∞} is a martingale (respectively,
submartingale).

The next result shows that there is some flexibility in choosing localizing
sequences
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Lemma 3 Suppose M is a right-continuous local square integrable martin-
gale on [0,∞), with localizing sequence {τn

∗}. Let {τn} be another increas-
ing sequence of stopping times with τn → ∞ and τn ≤ τn

∗ a. s. Then
{M(t) : t ≥ 0} also is right-continuous local square integrable martingale on
[0,∞), with localizing sequence {τn}.

We can now state the version of the Doob-Meyer Decomposition for non-
negative local submartingales.

Theorem (Extended Doob-Meyer Decomposition) 2 Let {X(t) : t ≥
0} be a nonnegative right-continuous Ft-local submartingale with localizing
sequence {τn}, where {Ft : t ≥ 0} is a right-continuous filtration. Then
there exists a unique increasing right-continuous predictable process A such
that A(0) = 0 a. s., P (A(t) < ∞) = 1 for alle t > 0, and X − A is a
right-continuous local martingale. At each t, A(t) may be taken as the a.s.
limn→∞ An(t), where An is the compensator of the stopped submartingale
X(· ∧ τn).

2.3 The martingale N − A revisited

The extended Doob-Meyer Decomposition implies the existence of a com-
pensator A for any counting process N so that N −A is a local martingale.
With other words it can be used to represent an arbitrary counting process
as the sum of a local martingale and a predictable increasing process.

Theorem 1 Let N be an arbitrary counting process, then there exists a
unique right-continuous predictable process A such that A(0) = 0 a. s.,
A(t) < ∞ a.s. for any t, and the process M = N −A is local martingales

Consistent with earlier terminology, the process A in the previous decompo-
sition of an arbitrary counting process will be called a compensator. Let’s
look at its characterization.

Theorem 2 Let N be a counting process and let A be its unique compensator
in the Extended Doob-Meyer Decomposition Theorem. Then:

1. A is a locally bounded process, and

2. 4A(t) ≡ A(t)− lims→t A(s) ≤ 1 a.s. for all t ≥ 0.

The next result provides a method for determining EN(t) and establishes
a condition under which M = N −A is a martingale.

Lemma 4 Suppose N is a counting process. Then EN(t) = ENA(t) for
any t, where A is the compensator for N. If EA(t) < ∞ for all t, then
M = N −A is a martingale.
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