COUNTING PROCESSES AND MARTINGALES I (PART 1)

Morosoli Giovanni

1 Stochastic processes

Definition 1.1 (random variable)

Let (Ω, \mathscr{F}, P) be a probability space. A function Z from Ω to \mathbb{R} is called a random variable (or measurable relative to \mathscr{F}) if $\{Z \leq x\} = \{\omega \in \Omega : Z(\omega) \leq x\} \in \mathscr{F}, \forall x.$

Definition 1.2 (stochastic process; trajectory)

A stochastic process is a family of random variables $X = \{X_t : t \in \Gamma\}$, where Γ is the so called index set. For a stochastic process X, the function $X(.,\omega) : \mathbb{R}^+ \longrightarrow \mathbb{R}, \ \omega \in \Omega$, are called sample paths or trajectories of X.

Definition 1.3 (equivalent random variables)

Two random variables X and Y are called equivalent if $P\{X \neq Y\} = 0$ i.e. X = Y almost surely.

Definition 1.4 (modification)

A stochastic process X is called a modification of another process Y, if for any t, X_t and Y_t are equivalent random variables.

Proposition 1.5

If the process X is a modification of the process Y, then X and Y have the same finite-dimensional distributions.

Definition 1.6 (indistinguishable)

The process X and Y are indistinguishable if $P\{\omega : X_t = Y_t \ \forall t \ge 0\} = 1$

Proposition 1.7

If the processes X and Y are indistinguishable, then the sample paths of X coincide with those of Y for almost all ω .

Proposition 1.8

If both the processes X and Y are left-continuous or both right-continuous, then: X and Y are indistinguishable \iff X and Y are modifications of one another.

Definition 1.9 (integrable; square integrable; bounded)

A stochasstic process X is

- Integrable if $sup_{0 \le t < \infty} E[|X_t|] < \infty;$
- Square integrable if $sup_{0 \le t < \infty} E\left[\left(X_t\right)^2\right] < \infty$
- Bounded if there exists a finite constant C such that: $P \{ sup_{0 \le t < \infty} | X_t | < C \} = 1$

The following definitions will allow a mathematical formulation of the concept of "information accruing over time".

Definition 1.10 (filtration; stochastic basis)

- A family of sub- σ -algebras { $\mathscr{F}_t : t \geq 0$ } of a σ -algebra \mathscr{F} is called increasing if $s \leq t \Longrightarrow \mathscr{F}_s \subset \mathscr{F}_t$ (i.e.: for $s \leq t, A \in \mathscr{F}_s \Rightarrow A \in \mathscr{F}_t$). An increasing family of sub σ -algebras is called a filtration.
- When $\{\mathscr{F}_t : t \geq 0\}$ is a filtration, the σ -algebra $\bigcap_{h>0} \mathscr{F}_{t+h}$ is usually denoted by \mathscr{F}_{t+} . The corresponding limit from the left, \mathscr{F}_{t-} , is the smallest σ -algebra containing all the sets in $\bigcup_{h>0} \mathscr{F}_{t-h}$
- A filtration $\{\mathscr{F}_t : t \ge 0\}$ is right-continuous if, for any $t \mathscr{F}_{t+} = \mathscr{F}_t$.
- A stochastic basis is a probability space (Ω, \mathscr{F}, P) equipped with a right-continuous filtration $\{\mathscr{F}_t : t \ge 0\}$, and is denoted by: $(\Omega, \mathscr{F}, \{\mathscr{F}_t : t \ge 0\}, P).$
- A stochastic basis is complete if *F* contains any subset of a P-null set and if each *F_t* contains all P-null sets of *F*.

Natural filtrations are families with $\mathscr{F}_t = \sigma \{X_s : 0 \le s \le t\}$ and are called histories of the stochastic process.

In this case, \mathscr{F}_t , contains the information" generated by the process X on [0, t].

Definition 1.11 (adapted)

A stochastic process $X = \{X_t : t \ge 0\}$ is adapted to a filtration if, for every $t \ge 0, X_t$ is \mathscr{F}_t -measurable.

Remark 1.12

Any process is adapted to its history.

Definition 1.13 (counting process)

A counting process is a stochastic process $\{N_t, t \ge 0\}$ adapted to a filtration $\{\mathscr{F}_t, t \ge 0\}$ with $N_0 = 0$ and $N_t < \infty$ a.s., and whose paths are with probability one right-continuous, piecewise constant, and have only jump discontinuities, with jumps of size +1.

Definition 1.14 (conditional expectation)

Let Y be a random variable on a probability space (X, \mathscr{F}, P) , and let \mathscr{G} be a sub σ -algebra of \mathscr{F} . We define X as a random variable satisfying:

- X is \mathscr{G} -measurable; and
- $\int_B Y dP = \int_B X dP, \forall B \in \mathscr{G}.$

The variable X is called the conditional expectation of Y given \mathscr{G} , and is denoted by $E(Y|\mathscr{G})$.

Proposition 1.15 (Properties of conditional expectation)

Let (Ω, \mathscr{F}, P) be a probability space, X, Y random variables on this space and $\mathscr{F}_s \subset \mathscr{F}_t \subset \mathscr{F}$ sub σ -algebras. Then:

- 1. $\mathscr{F}_t = \{ \varnothing, \Omega \}, E[X|\mathscr{F}_t] = E[X] \text{ a.s.}$
- 2. $E[E[X|\mathscr{F}_t]] = E[X]$
- 3. If $\mathscr{F}_s \subset \mathscr{F}_t$, then: $E\left[E\left[X|\mathscr{F}_s\right]|\mathscr{F}_t\right] = E\left[E\left[X|\mathscr{F}_t\right]|\mathscr{F}_s\right] = E\left[X|\mathscr{F}_s\right] a.s.$
- 4. If $\sigma(Y) \subset \mathscr{F}_t$, then $E[XY|\mathscr{F}_t] = YE[X|\mathscr{F}_t]$ a.s.
- 5. Let X, Y be independent random variables, and $\mathscr{G} = \sigma(X)$, then: $E[Y|\mathscr{G}] = E[Y]$
- 6. $E[aX + bY|\mathscr{F}_t] = aE[X|\mathscr{F}_t] + bE[Y|\mathscr{F}_t]a.s, a, b \text{ constants.}$
- 7. (Jensen inequality) Let g be a real convex function, then: $E[g(X)|\mathscr{F}_t] \ge g(E[X|\mathscr{F}_t]).$

Notation: For X, Y two tandom variables: $E[Y|X] := E[Y|\sigma(X)]$ Generally: If \mathscr{A} is a family of random variables, then $E[Y|\mathscr{A}] := E[Y|\sigma(\mathscr{A})]$

Definition 1.16 (martingale)

Let $X = \{X_t : t \ge 0\}$ be a right-continuous stochastic process with lefthand limits and $\{\mathscr{F}_t : t \ge 0\}$ a filtration, defined on a common probability space. Then X is called a martingale with respect to $\{\mathscr{F}_t : t \ge 0\}$ if:

- 1. X is adapted to $\{\mathscr{F}_t : t \geq 0\},\$
- 2. $E[|X_t|] < \infty, \forall t < \infty,$
- 3. $E[X_{t+s}|\mathscr{F}_t] = X_t \text{ a.s. } \forall s \ge 0, t \ge 0.$

X is called a submartingale if property 3 is replaced by $E[X_{t+s}|\mathscr{F}_t] \geq X_t$ a.s., and a supermartingale if it is replaced by $E[X_{t+s}|\mathscr{F}_t] \leq X_t$ a.s.

Proposition 1.17

Let X be a martingale with respect to a filtration $\{\mathscr{F}_t : t \ge 0\}$. Then $E[X_t|\mathscr{F}_{t-}] = X_{t-}$ a.s.

2 The martingale M = N - A

Proposition 2.1

Let

- T and U be nonnegative, independent random variables
- $X = \min(U, T)$
- { N_t : $t \ge 0$ } be a counting process given at time t by $N_t = I_{\{X \le t, \delta = 1\}} = \delta I_{\{T \le t\}}$, where $\delta = I_{\{T \le U\}}$
- $\lambda(t) = \lim_{\Delta t \downarrow 0} (\Delta t)^{-1} P [t \le T < t + \Delta t] [P [T \ge t]]^{-1}$
- $\{A_t : t \ge 0\}$ be a stochastic process given by $A_t = \int_0^t I_{\{X \ge u\}} \lambda(u) du$

Then the process $\{M_t : t \ge 0\}$ given at time t by: $M_t = I_{\{X \le t, \delta = 1\}} - \int_0^t I_{\{X \ge u\}} \lambda(u) du = N_t - A_t$ is a martingale.

Theorem 2.2

Let T be an absolutely continous random variable and U a random variable with an arbitrary distribution. Set $X = \min(T, U)$, $\delta = I_{\{T \leq U\}}$, and let δ denote the hazard function for T. Define $N_t = I_{\{X \leq t, \delta = 1\}}$, $N_t^U = I_{\{X \leq t, \delta = 0\}}$ and $\mathscr{F}_t = \sigma \{N_u, N_u^U : 0 \leq u \leq t\}$.

Then the process M given by $M_t = N_t - \int_0^t I_{\{X \ge u\}} \lambda(u) du$ is an \mathscr{F}_t -martingale if and only if $\lambda(t) = \frac{-\frac{\partial}{\partial u} P[T \ge u, U \ge t]|_{u=t}}{P[T \ge t, U \ge t]}$ whenever P[X > t] > 0.

Remark 2.3

The hazard function $\lambda(t)$ is also called "net hazard function", and $\lambda'(t) = \frac{-\frac{\partial}{\partial u}P[T \ge u, U \ge t]|_{u=t}}{P[T \ge t, U \ge t]}$ is called "crude hazard function".

Definition 2.4 (cumulative hazard function)

Let T be a random variable with arbitrary distribution function $F(t) = P[T \le t]$. The cumulative hazard function Λ for T is given by $\Lambda(t) = \int_0^t \frac{dF(u)}{1-F(u-1)} dF(u) dF(u) dF(u)$.

Theorem 2.5

Let T and U be two random variables and let $X = \min(T, U), \delta = I_{\{T \leq U\}}, N_t = I_{\{X \leq t, \delta = 1\}}, N_t^U = I_{\{X \leq t, \delta = 0\}}$ and $\mathscr{F}_t = \sigma \{N_u, N_u^U : 0 \leq u \leq t\}.$ Then the process M given by $M_t = N_t - \int_0^t I_{\{X \geq u\}} d\Lambda(u)$ is an \mathscr{F}_t -martingale if and only if $\frac{dF(z)}{1-F(z-)} = \frac{-dP[T \geq z; U \geq T]}{P[T \geq z; U \geq z]}$ for all z such that $P[T \geq z, U \geq z] > 0.$