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Exercise Series 10

1. Consider once again the linear regression model from exercise 5:

Yi = 1 − 2 · xi2 + 3 · xi3 + εi, i ∈ 1, . . . , 100,

where the pairs xi2, xi3 lie on a {1, . . . , 10}×{1, . . . , 10} grid. We assume the following error
distribution:

εi ∼ 1 − Exp (1) .

The single-bootstrap confidence intervals from exercise 5 yield only approximately the correct
coverage level of 95%. Using a double-bootstrap technique described in the manuscript this
coverage level can be made much more precise. In this exercise you are going to write your
own double-bootstrap routine and for each of the three regression-parameters in the above
model we want compute a refined nominal coverage level 1 − α′ to get confidence-intervals
with an approximate actual coverage level 1 − α of about 0.95. To do this, complete the
following steps:

a) Generate data from this model and store it in a data-frame.

R-Hint: For reproducibility use set.seed(11).

b) Following the algorithm described in the manuscript, write your own double-bootstrap
routine which estimates for every parameter and for a given nominal coverage level
1 − α, the corresponding actual coverage level 1 − α′ and evaluate your function on the
following grid:

alpha = 1 - seq(0.999,0.8,length=20)

R-Hints: You may want to extend your single-bootstrap source-code from exercise 5.
The evaluation of your double bootstrap-routine on the whole grid might take some time.
If your computer-power allows, use M=500 first-level and B=999 second-level bootstraps.

c) Plot 1 − α′ against 1 − α for every parameter and for 1 − α′ = 0.95 deduce the corre-
sponding 1 − α- value for every parameter by ”graphical inversion” from the plots.

R-Hints: Graphical inversion can be done using the R-function locator which helps
to find coordinates of arbitrary positions in a plot which are defined by ”mouseclicking”.

d) A more rigorous procedure to find the corresponding nominal levels 1 − α for the three
regression-parameters consists of smoothing the curve from b) and doing numerical
root-finding.

R-Hints: The R-function splinefun performs spline-interpolation through given data
points. Its output is the interpolating spline as a functional object. To find the desired
coverage levels you could therefore search for the roots of the following function:

flev <- function(x)

splinefun(1-alpha,cge[j,])(x) - 0.95

where cge is a 3 × 20-matrix containing your estimated actual coverage levels from
the double-bootstrap-routine in b) and j defines which parameter is considered at the
moment. Rootfinding can be done using the R-function uniroot.
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2. The data-frame parboot.dat contains simulated data from the following model:

y = 8 · x + 4 · cos(14 · x) + εi, i ∈ 1, . . . , 70,

where x ∈ { j

70
, j = 1, . . . , 70} and εi ∼ P iid. for an unknown distribution P .

In this exercise we want to compare confidence-intervals for nonparametric-regression which
are generated by 3 different techniques, that are:

• hat-matrix approach (as in exercise 3)

• parametric bootstrap with assumption εi ∼ N (0, σ2)

• model-based bootstrap with no assumptions about the errors.

To do this, fit a smoothing-spline (automatic choice of degrees of freedom) to the parboot-
data and compute confidence-intervals at selected locations. Those locations are:

x.pre <- seq(5,62,by=3)/70

Plot the data, the spline-fit, the original curve and and all confidence intervals at the selected
locations into the same plot and comment on the results.

R-Hints: The data is located at http://stat.ethz.ch/Teaching/Datasets/parboot.dat.
Use R = 2000 bootstrap-samples in each case. For the hat-matrix approach you need to
compute the hat-matrix for smooth.spline for the given data. This can again be done by
smoothing unit vectors as in exercise 3. Use the same degrees of freedom for fit and hat-
matrix-generation. smooth.spline automatically calculates the degrees of freedom. For the
parametric bootstrap approach you need an estimate for the error variance σ2. You can use
the same estimate as in hat-matrix-theory, that is

σ̂2 =

n∑

i=1

(Yi − m̂(xi))
2

n − df
.

As a hint for the interpretation you could check the Gaussian assumption that the paramet-
rical bootstrap-technique makes by looking at the normal-plot (qqnorm) for the residuals.

Preliminary discussion Friday, June 23, 2006. Deadline: Friday, June 30, 2006, at the
beginning of the lecture.

Advice: Thursdays from 12.00-13.00, LEO C12.1, Leonhardstr. 27. Or contact either Bernadetta
Tarigan, tarigan@stat.m ath.ethz.ch, or Nicoleta Gosoniu, gosoniu@ifspm.unizh.ch.


