Exercise Series 10

1. Consider once again the linear regression model from exercise 5:

$$
Y_{i}=1-2 \cdot x_{i 2}+3 \cdot x_{i 3}+\epsilon_{i}, \quad i \in 1, \ldots, 100
$$

where the pairs $x_{i 2}, x_{i 3}$ lie on a $\{1, \ldots, 10\} \times\{1, \ldots, 10\}$ grid. We assume the following error distribution:

$$
\epsilon_{i} \sim 1-\operatorname{Exp}(1)
$$

The single-bootstrap confidence intervals from exercise 5 yield only approximately the correct coverage level of 95%. Using a double-bootstrap technique described in the manuscript this coverage level can be made much more precise. In this exercise you are going to write your own double-bootstrap routine and for each of the three regression-parameters in the above model we want compute a refined nominal coverage level $1-\alpha^{\prime}$ to get confidence-intervals with an approximate actual coverage level $1-\alpha$ of about 0.95 . To do this, complete the following steps:
a) Generate data from this model and store it in a data-frame.

R-Hint: For reproducibility use set.seed(11).
b) Following the algorithm described in the manuscript, write your own double-bootstrap routine which estimates for every parameter and for a given nominal coverage level $1-\alpha$, the corresponding actual coverage level $1-\alpha^{\prime}$ and evaluate your function on the following grid:

$$
\text { alpha }=1-\operatorname{seq}(0.999,0.8, l e n g t h=20)
$$

R-Hints: You may want to extend your single-bootstrap source-code from exercise 5. The evaluation of your double bootstrap-routine on the whole grid might take some time. If your computer-power allows, use $M=500$ first-level and $B=999$ second-level bootstraps.
c) Plot $1-\alpha^{\prime}$ against $1-\alpha$ for every parameter and for $1-\alpha^{\prime}=0.95$ deduce the corresponding $1-\alpha$ - value for every parameter by "graphical inversion" from the plots.

R-Hints: Graphical inversion can be done using the R-function locator which helps to find coordinates of arbitrary positions in a plot which are defined by "mouseclicking".
d) A more rigorous procedure to find the corresponding nominal levels $1-\alpha$ for the three regression-parameters consists of smoothing the curve from b) and doing numerical root-finding.

R-Hints: The R-function splinefun performs spline-interpolation through given data points. Its output is the interpolating spline as a functional object. To find the desired coverage levels you could therefore search for the roots of the following function:

```
flev <- function(x)
    splinefun(1-alpha, cge[j,])(x) - 0.95
```

where cge is a 3×20-matrix containing your estimated actual coverage levels from the double-bootstrap-routine in \mathbf{b}) and j defines which parameter is considered at the moment. Rootfinding can be done using the R-function uniroot.
2. The data-frame parboot. dat contains simulated data from the following model:

$$
y=8 \cdot x+4 \cdot \cos (14 \cdot x)+\epsilon_{i}, \quad i \in 1, \ldots, 70
$$

where $x \in\left\{\frac{j}{70}, j=1, \ldots, 70\right\}$ and $\epsilon_{i} \sim P$ iid. for an unknown distribution P.
In this exercise we want to compare confidence-intervals for nonparametric-regression which are generated by 3 different techniques, that are:

- hat-matrix approach (as in exercise 3)
- parametric bootstrap with assumption $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- model-based bootstrap with no assumptions about the errors.

To do this, fit a smoothing-spline (automatic choice of degrees of freedom) to the parbootdata and compute confidence-intervals at selected locations. Those locations are:

$$
\text { x.pre <- } \operatorname{seq}(5,62, b y=3) / 70
$$

Plot the data, the spline-fit, the original curve and and all confidence intervals at the selected locations into the same plot and comment on the results.

R-Hints: The data is located at http://stat.ethz.ch/Teaching/Datasets/parboot.dat. Use $R=2000$ bootstrap-samples in each case. For the hat-matrix approach you need to compute the hat-matrix for smooth.spline for the given data. This can again be done by smoothing unit vectors as in exercise 3. Use the same degrees of freedom for fit and hat-matrix-generation. smooth.spline automatically calculates the degrees of freedom. For the parametric bootstrap approach you need an estimate for the error variance σ^{2}. You can use the same estimate as in hat-matrix-theory, that is

$$
\hat{\sigma}^{2}=\sum_{i=1}^{n} \frac{\left(Y_{i}-\hat{m}\left(x_{i}\right)\right)^{2}}{n-d f}
$$

As a hint for the interpretation you could check the Gaussian assumption that the parametrical bootstrap-technique makes by looking at the normal-plot (qqnorm) for the residuals.
Preliminary discussion Friday, June 23, 2006. Deadline: Friday, June 30, 2006, at the beginning of the lecture.
Advice: Thursdays from 12.00-13.00, LEO C12.1, Leonhardstr. 27. Or contact either Bernadetta Tarigan, tarigan@stat.m ath.ethz.ch, or Nicoleta Gosoniu, gosoniu@ifspm.unizh.ch.

