
Dr. M. Mächler Computational Statistics SS 2006

Exercise Series 11

1. a) Let’s consider the general linear regression model:

yi = β0 +

p∑

j=1

βj · xij.

Show that this model is equivalent to the following one:

yi − ȳ =

p∑

j=1

βj · (xij − x̄.j).

Therefore by centering the variables it is always possible to get rid of the intercept β0.

b) Show that the ridge-regression solution defined as

β̃
∗
(s) = arg min

‖β‖2≤s

‖Y − Xβ‖2

is given by
β̂∗(λ) = (XᵀX + λI)−1XᵀY.

where λ is a suitably chosen Lagrange-multiplicator. Therefore the ridge estimator is
still linearly depending on the response Y. Note that (at least) for large λ the ridge
solution exists even if XᵀX has not full rank or if it is computationally close to singular.
Therefore ridge regression is practiable also if n � p.

c) The ridge traces β̂∗(λ) can computationally easily be determined by using a singular

value decomposition of the data matrix X = UDV ᵀ where U(n × p) and V (p × p) are
orthogonal and D is diagonal. Show that:

β̂∗(λ) = V (D2 + λI)−1DUᵀY.

d) Show that the ridge regression fit is just a linear combination of shrinked response-
components yi with respect to the orthogonal basis defined by U . More explicitly show
that:

ŷridge (λ) =

p∑

j=1

uj

d2

j

d2

j + λ
uj

ᵀy,

where dj are the diagonal elements of D. In fact one can show that the directions
defined by uj are the so called principal components of the dataset X. The smaller the
corresponding dj-value, the smaller the data variance in direction uj. For directions with
small data variance, the gradient estimation for the minimization problem is difficult,
therefore ridge regression shrinks the corresponding coefficients the most.

e) Ridge regression can also be motivated by Bayesian theory. We assume that

Y|β ∼ N (Xβ, σ2I) and β ∼ N (0, τI).

Show that the ridge estimator β̂∗(λ) is the mean of the posterior distribution. What is
the relationship between λ, τ and σ2?
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2. Once again we look at the dataset vehicle.dat which still can be found at:

"http://www.ethz.ch/Teaching/Datasets/NDK/vehicle.dat"

This time we apply two shrinking regression methods as our classifiers, namely ridge- re-

gression and lasso. The aims of this exercise are to find the optimal degree of shrinking by
cross-validation, to evaluate the methods’ classification accuracy and predictive power and
finally to compare the results to the rpart- and nnet-results from exercise 8.

Packages: MASS and lars.

Ridge-regression is performed by the function lm.ridge which can be found in the MASS-
package, whereas lasso is provided as function lars in the homonymous package lars.

a) Because we use plain non-generalized regression methods as classifiers in a mutlticlass-
classification problem (remember that the Class-variable consists of four factors bus,van,

saab,opel) we can choose a one against the rest - approach (as described in the manuscript
on p.56). Write functions cl.lasso and cl.ridge which calculate the misclassification
rate. Write the functions in such a way that they can as well be used later in your
CV-code to determine optimal tuning parameters for the shrinkage-process.

R-Hints: From the help-file ?lm.ridge we learn that the parameter lambda which
determines the degree of penalization on the regression coefficient vector’s L2-norm can
be given as a whole vector. A good choice could be:

lambda <- c(0,2^c(-10,-5, seq(0,10, length=101)))

m.ridge <- lm.ridge(formula = ???,data=???,lambda=lambda,...)

There is no predefined predict-method for ridgelm- objects. You have to calculate the
prediction - probabilities for each factor on your own. Because lm.ridge does centering
and scaling of the input data, you need to backtransform by something like (help file
for explanation!):

prob[,i,] <- with(m.ridge, ym * Inter + ((x.new-rep(xm,each = l.new))*

Inter/rep(scales,each = l.new)) %*% coef)

where x.new is the matrix of predictors. Because m.ridge$coef gives the regression
coefficients for all values of the tuning parameter vector lambda at once, it is convenient
to store the probabilites in a 3-dimensional array, where the first index is over the
datapoints, the second over the factors and the third over the components of lambda.

For lars-objects there are methods predict() and coef() which can be used for pre-
diction. See predict.lars for details. Use the option mode = "fraction" for predict.
Then the tuning parameter s can nicely be interpreted as it corresponds to a regression
coefficient whose L1-norm is s% of the corresponding least-squares coefficient vector’s
L1-norm. Therefore a convenient choice for s is:

s <- seq(0,1,length=100)

prob[,i,] <- predict(m.lasso,newx=x.new,s=s.range,type="fit",

mode="fraction")$fit

Again prediction is made for all s-components at once.
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b) Write functions CV.ridge and CV.lasso to determine optimal values for the tuning pa-

rameters lambda and s. Choose misclassification-error as your CV-criterion. Note that
there can be several grid points at which the minimum is attained because softmax-
classification may stay the same in a small neighbourhood of a given shrinkage parameter
because in such a neighbourhood the regression coefficients and thus also the probabili-
ties for the different factors will change only a little. From all CV-optimal models choose
the one with the lowest misclassification error on the whole vehicle data-set.

c) Plot the lasso- and ridge traces, fit the optimal models and compare their perfomance
with rpart and nnet from exercise 10. Because of L1-penalization many of the fitted
lasso-method regression coefficients can become 0. As rpart the lasso can thus be used
for variable selection. Compare the selections of relevant predictors made by the lasso
to those made by rpart.

R-Hints: for traces-plotting you can use the ordinary plot-function for lars and
ridgelm-objects. For lars you can also look at ?plot.lars.

Preliminary discussion: Friday, June 30, 2006.
Deadline: Friday, July 7, 2006, at the beginning of the lecture.

Advice: Thursdays from 12.00-13.00, LEO C12.1, Leonhardstr. 27. Or contact either Bernadetta
Tarigan, tarigan@stat.math.ethz.ch, or Nicoleta Gosoniu, gosoniu@ifspm.unizh.ch.

TESTAT:
This is the last Series. In total there are 11 Series with 19 number of exercises. Thus, 60% of
the total means 11.4 points. Please check your total points whether you will obtain (or, have
obtained) enough points for the testat, which is ≥ 11.4 points.


