
Dr. M. Mächler Computational Statistics FS 2008

Exercise 7

1. The data-frame parboot.dat contains simulated data from the following model:

y = 8 · x + 4 · cos(14 · x) + εi, i ∈ 1, . . . , 70,

where x ∈ { j
70

, j = 1, . . . , 70} and εi ∼ P iid. for an unknown distribution P .

In this exercise we want to compare confidence-intervals for nonparametric-regression which
are generated by 3 different techniques, that are:

• hat-matrix approach (as in exercise 3)

• parametric bootstrap with assumption εi ∼ N (0, σ2)

• model-based bootstrap with no assumptions about the errors.

To do this, fit a smoothing-spline (automatic choice of degrees of freedom) to the parboot-
data and compute confidence-intervals at selected locations. Those locations are:

x.pre <- seq(5,62,by=3)/70

Plot the data, the spline-fit, the original curve and and all confidence intervals at the selected
locations into the same plot and comment on the results.

R-Hints: The data is located at http://stat.ethz.ch/Teaching/Datasets/parboot.dat.
Use B = 2000 bootstrap-samples in each case. For the hat-matrix approach you need to
compute the hat-matrix for smooth.spline for the given data. This can again be done by
smoothing unit vectors as in exercise 3. Use the same degrees of freedom for fit and hat-
matrix-generation. smooth.spline automatically calculates the degrees of freedom. For the
parametric bootstrap approach you need an estimate for the error variance σ2. You can use
the same estimate as in hat-matrix-theory, that is

σ̂2 =

n∑

i=1

(Yi − m̂(xi))
2

n − df
.

As a hint for the interpretation you could check the Gaussian assumption that the paramet-
rical bootstrap-technique makes by looking at the normal-plot (qqnorm) for the residuals.

2. a) Quadratic Discriminant Analysis (QDA)
Assume the normal model X|Y = j ∼ N p(µj ,Σj), P[Y = j] = pj,

∑J−1

j=0
pj = 1.

Show that (6.2) and (6.4) lead to

δ̂QDA
j (x) = − log(det(Σ̂j))/2 − (x − µ̂j)

ᵀΣ̂−1

j (x − µ̂j)/2 + log(p̂j).

Computational Statistics (FS 2008) — Exercise 7 — 2

b) Linear Discriminant Analysis (LDA)
Use the result from a) and replace Σ̂j by Σ̂ to get

δ̂LDA
j (x) = xᵀΣ̂−1µ̂j − µ̂j

ᵀΣ̂−1µ̂j/2 + log(p̂j) (1)

= (x − µ̂j/2)
ᵀΣ̂−1µ̂j + log(p̂j).

c) The LDA decision function can be written as (see (1) above)

δ̂j(x) = xᵀbj + cj,

where bj ∈ R
p and cj ∈ R. Assume that we only have two classes (j = 0, 1). Use the

equation above to characterize the decision boundary.

d) Small Simulation
Use the R-code below to get an idea about how LDA works. Change the covariance
matrix and mean vectors if you like.

Manually calculate (see c)) the boundary between group 1 and 2. Add your solution to
the plot with abline().

Hint:
If A <- fit$scaling it holds (in the case of p+ 1 groups in R

p) that Σ̂−1 = AAᵀ. The
means and prior probabilites can also be found in the lda-object.

R-Code:

library(mvtnorm) ## Needed for rmvnorm

library(MASS) ## Needed for lda/qda

prediction plot code

predplot <- function(object, x, main = "", len = 200, ...)

{

xp <- seq(min(x[,1]), max(x[,1]), length=len)

yp <- seq(min(x[,2]), max(x[,2]), length=len)

grid <- expand.grid(xp, yp)

colnames(grid) <- colnames(x)[-3]

Z <- predict(object, grid, ...)

zp <- as.numeric(Z$class)

zp <- Z$post[,3] - pmax(Z$post[,2], Z$post[,1])

plot(x[,1], x[,2], col = x[,3], pch = x[,3], main = main)

contour(xp, yp, matrix(zp, len),

add = T, levels = 0, drawlabels = FALSE)

zp <- Z$post[,1] - pmax(Z$post[,2], Z$post[,3])

contour(xp, yp, matrix(zp, len),

add = T, levels = 0, drawlabels = FALSE)

}

Covariance Matrix

sigma <- cbind(c(0.5, 0.3), c(0.3, 0.5))

Mean vectors

mu1 <- c(3, 1.5)

mu2 <- c(4, 4)

mu3 <- c(8.5, 2)

m <- matrix(0, nrow = 300, ncol = 3)

Grouping vector

m[,3] <- rep(1:3, each = 100)

Simulate data

Computational Statistics (FS 2008) — Exercise 7 — 3

m[1:100,1:2] <- rmvnorm(n = 100, mean = mu1, sigma = sigma)

m[101:200,1:2] <- rmvnorm(n = 100, mean = mu2, sigma = sigma)

m[201:300,1:2] <- rmvnorm(n = 100, mean = mu3, sigma = sigma)

m <- data.frame(m)

Perform LDA

fit <- lda(x = m[,1:2], grouping = m[,3])

Plot the decision boundaries

predplot(fit, m)

Preliminary discussion: Friday, April 25, 2008. Deadline: Friday, May 2, 2008.

