Exercise 7

1. The data-frame parboot. dat contains simulated data from the following model:

$$
y=8 \cdot x+4 \cdot \cos (14 \cdot x)+\epsilon_{i}, \quad i \in 1, \ldots, 70
$$

where $x \in\left\{\frac{j}{70}, j=1, \ldots, 70\right\}$ and $\epsilon_{i} \sim P$ iid. for an unknown distribution P.
In this exercise we want to compare confidence-intervals for nonparametric-regression which are generated by 3 different techniques, that are:

- hat-matrix approach (as in exercise 3)
- parametric bootstrap with assumption $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- model-based bootstrap with no assumptions about the errors.

To do this, fit a smoothing-spline (automatic choice of degrees of freedom) to the parbootdata and compute confidence-intervals at selected locations. Those locations are:

$$
x . \text { pre }<-\operatorname{seq}(5,62, \text { by=3)/70 }
$$

Plot the data, the spline-fit, the original curve and and all confidence intervals at the selected locations into the same plot and comment on the results.

R-Hints: The data is located at http://stat.ethz.ch/Teaching/Datasets/parboot. dat. Use $B=2000$ bootstrap-samples in each case. For the hat-matrix approach you need to compute the hat-matrix for smooth.spline for the given data. This can again be done by smoothing unit vectors as in exercise 3. Use the same degrees of freedom for fit and hat-matrix-generation. smooth.spline automatically calculates the degrees of freedom. For the parametric bootstrap approach you need an estimate for the error variance σ^{2}. You can use the same estimate as in hat-matrix-theory, that is

$$
\hat{\sigma}^{2}=\sum_{i=1}^{n} \frac{\left(Y_{i}-\hat{m}\left(x_{i}\right)\right)^{2}}{n-d f}
$$

As a hint for the interpretation you could check the Gaussian assumption that the parametrical bootstrap-technique makes by looking at the normal-plot (qqnorm) for the residuals.
2. a) Quadratic Discriminant Analysis (QDA)

Assume the normal model $X \mid Y=j \sim \mathcal{N}_{p}\left(\mu_{j}, \Sigma_{j}\right), \mathbb{P}[Y=j]=p_{j}, \sum_{j=0}^{J-1} p_{j}=1$.
Show that (6.2) and (6.4) lead to

$$
\hat{\delta}_{j}^{Q D A}(x)=-\log \left(\operatorname{det}\left(\hat{\Sigma}_{j}\right)\right) / 2-\left(x-\hat{\mu}_{j}\right)^{\top} \hat{\Sigma}_{j}^{-1}\left(x-\hat{\mu}_{j}\right) / 2+\log \left(\hat{p}_{j}\right) .
$$

b) Linear Discriminant Analysis (LDA)

Use the result from a) and replace $\hat{\Sigma}_{j}$ by $\hat{\Sigma}$ to get

$$
\begin{align*}
\hat{\delta}_{j}^{L D A}(x) & =x^{\top} \hat{\Sigma}^{-1} \hat{\mu}_{j}-\hat{\mu}_{j}^{\top} \hat{\Sigma}^{-1} \hat{\mu}_{j} / 2+\log \left(\hat{p}_{j}\right) \tag{1}\\
& =\left(x-\hat{\mu}_{j} / 2\right)^{\top} \hat{\Sigma}^{-1} \hat{\mu}_{j}+\log \left(\hat{p}_{j}\right) .
\end{align*}
$$

c) The LDA decision function can be written as (see (1) above)

$$
\hat{\delta}_{j}(x)=x^{\top} b_{j}+c_{j},
$$

where $b_{j} \in \mathbb{R}^{p}$ and $c_{j} \in \mathbb{R}$. Assume that we only have two classes $(j=0,1)$. Use the equation above to characterize the decision boundary.
d) Small Simulation

Use the R-code below to get an idea about how LDA works. Change the covariance matrix and mean vectors if you like.
Manually calculate (see c)) the boundary between group 1 and 2. Add your solution to the plot with abline().

Hint:

If $\mathrm{A}<-\mathrm{fit} \$ \mathrm{scaling}$ it holds (in the case of $p+1$ groups in \mathbb{R}^{p}) that $\hat{\Sigma}^{-1}=A A^{\top}$. The means and prior probabilites can also be found in the lda-object.

R-Code:

```
library(mvtnorm) ## Needed for rmvnorm
library(MASS) ## Needed for lda/qda
## prediction plot code
predplot <- function(object, x, main = "", len = 200, ...)
{
    xp <- seq(min(x[,1]), max(x[,1]), length=len)
    yp <- seq(min(x[,2]), max(x[,2]), length=len)
    grid <- expand.grid(xp, yp)
    colnames(grid) <- colnames(x) [-3]
    Z <- predict(object, grid, ...)
    zp <- as.numeric(Z$class)
    zp <- Z$post[,3] - pmax(Z$post[,2], Z$post[,1])
    plot(x[,1], x[,2], col = x[,3], pch = x[,3], main = main)
    contour(xp, yp, matrix(zp, len),
        add = T, levels = 0, drawlabels = FALSE)
    zp <- Z$post[,1] - pmax(Z$post[,2], Z$post[,3])
    contour(xp, yp, matrix(zp, len),
        add = T, levels = 0, drawlabels = FALSE)
}
## Covariance Matrix
sigma <- cbind(c(0.5, 0.3), c(0.3, 0.5))
## Mean vectors
mu1 <- c(3, 1.5)
mu2 <- c(4, 4)
mu3 <- c(8.5, 2)
m <- matrix(0, nrow = 300, ncol = 3)
## Grouping vector
m[,3] <- rep(1:3, each = 100)
## Simulate data
```

```
m[1:100,1:2] <- rmvnorm(n = 100, mean = mu1, sigma = sigma)
m[101:200,1:2] <- rmvnorm(n = 100, mean = mu2, sigma = sigma)
m[201:300,1:2] <- rmvnorm(n = 100, mean = mu3, sigma = sigma)
m <- data.frame(m)
## Perform LDA
fit <- lda(x = m[,1:2], grouping = m[,3])
## Plot the decision boundaries
predplot(fit, m)
```

Preliminary discussion: Friday, April 25, 2008. Deadline: Friday, May 2, 2008.

