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Exercise Series 6

1. Consider the following linear regression model.

Yi = 1 − 2xi2 + 3xi3 + εi, i = 1, . . . , 100, (1)

where the pairs xi2, xi3 lie on a {1, . . . , 10} × {1, . . . , 10}-grid, i.e.,

x2 <- rep(1:10,10)

x3 <- rep(1:10,each=10)

a) Simulate 100 datasets1 from model (1) and compute each time classical “normal theory”
0.95-confidence intervals and bootstrap 0.95-confidence intervals for the three regression
parameters. How often do the confidence intervals include the true values under the
following i.i.d. distributions of the εi, i = 1, . . . , n:

• N (0, 1).

• t3 (rt).

• εi = ei − 1, ei exponential(1)-distributed (rexp).

R-hints: To make your results reproducible, use set.seed(11) at the beginning of
your simulation experiment.

classical confidence intervals for output objects of lm must be computed manually:

pars <- coef(lmobj) # parameter estimators

se <- coef(summary(lmobj))[,2] # their standard errors

cubdy[,i] <- pars + se * qt(0.975,97)

clbdy[,i] <- pars - se * qt(0.975,97)

The function boot from package boot allows automatic bootstrapping of statistics on
given data. To apply this function, you have to write an own R-function which returns
the regression coefficients and has arguments dat and ind. dat is a data frame containing
the variables y, x2 and x3 and ind is a vector of indices (see help page, parameter
statistic). Such a function may look like this:

lmcoefs <- function(dat, ind)

{

coef(lm(y~x2+x3,data=dat[ind,]))

}

Then use the boot function:

bst <- boot(...)

Bootstrap confidence intervals are computed by boot.ci which may look as follows

bstci <- boot.ci(bst,type="basic",index=k)

bst is the output of boot, index should be 1 for the intercept parameter, 2 and 3 for the
regression parameters (if computed as in lmcoefs above). The interval bounds come as
values bstci$basic[4] and bstci$basic[5].

1It depends on the computer time you can spend, if you try 50, 100, 200 or 1000 simulations. It may need lots
of time, because each time a complete bootstrap simulation has to be carried out. You can always downsize your
simulations by simulating fewer datasets and/or varying the number of bootstrap replicates.
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b) Now write your own bootstrap-routine and do the 100 simulations again. Compare all
the three confidence-interval types (normal, bootstrap, own-bootstrap) and estimate the
actual coverage for each of them for all three error distributions.

R-Hints: To sample the bootstrap-indices for your own bootstrap-routine, use the
functions sample and/or replicate (Look at the help-files!).

c) In this part of the exercise we want to compare the usual L1-loss
1

n

∑
n

i=1
|yi−m̂(xi)| with

the L1-generalization error E [|Ynew − m̂(Xnew)|]. This time the L1-generalization-
error is estimated by bootstrapping instead of cross-validation as described in the manu-
script. Do 100 simulations for each of the given error distributions. In each simulation
calculate the two quantities of interest and compare their averages over the whole range
of simulations. A histogram of the two quantities may be informative too. You might
want to recycle the bootstrap-samples you generated above.

Preliminary discussion: Friday, April 18, 2008.

Deadline: Friday, April 25, 2008, at the beginning of the seminar.


