Dr. M. Mächler

Computational Statistics

Exercise Series 4

1. The dataset bmw is a time series of log returns of the BMW stock (business-daily, between June 1986 and March 1990). The log return is defined as follows:

$$X_t = \log\left(\frac{P_t}{P_{t-1}}\right),\,$$

where P_t is the stock price at time t. Log returns can be modelled by

$$X_t = \sigma_t \epsilon_t$$
, where $\mathbf{E}[\epsilon_t] = 0$, $\operatorname{Var}(\epsilon_t) = 1$, (1)

 ϵ_t independent of $\{X_s; s < t\}, \sigma_t^2 = v(X_{t-1})$, where $v : \mathbb{R} \mapsto \mathbb{R}^+$ is the so-called "volatility function". Thus, X_t depends on $\{X_s; s < t\}$ only through X_{t-1} (Markov-property).

The model can be fitted by nonparametric regression of the function v in

$$Y_t = X_t^2 = v(X_{t-1}) + \eta_t$$
, where $\eta_t = \sigma_t^2 (\epsilon_t^2 - 1)$

is treated as error term.

a) Compute $\mathbf{E}[X_t|X_{t-1}, X_{t-2}, \ldots]$, $\operatorname{Var}(X_t|X_{t-1}, X_{t-2}, \ldots)$, $\operatorname{Cov}(X_t, X_{t-h})$, h > 0. Background about conditional expectations:

For two (possibly multi-dimensional) random variables X and Y, the conditional distribution $P^{Y|X=x}$ can be uniquely defined for P-almost all values of X. Define $h(x) = \mathbf{E}[Y|X=x]$ as the expectation of Y under the conditional distribution $P^{Y|X=x}$. For the random variable X, $h(X) = \mathbf{E}[Y|X]$ is a random variable. Here is a very useful equation (the so-called tower property), which will be needed for parts a and b:

$$\mathbf{E}[Y] = \mathbf{E}\left[\mathbf{E}[Y|X]\right],\tag{2}$$

the outer expectation taken over the distribution of X. Conditional variances and covariances are defined analogously.

b) Show $\mathbf{E}[\eta_t] = 0$.

Note: Other usual model assumptions on errors, such as independence, are not fulfilled by η_t , but with some effort (don't try!) it can be shown that v can be optimally estimated by the same estimation methods as if the η_t would be independent errors.

c) Model (1) is often chosen for this kind of data because it leads to observations that are not autocorrelated¹ (as shown in part a), but dependent. Dependency can be verified by showing that under the model, $\text{Cov}(X_t^2, X_{t-h}^2) \neq 0$, h > 0 (complicated). Plot and interpret the autocorrelation functions of X_t and X_t^2 for the BMW-dataset. The data can be read into R by

bmwlr <- scan("http://stat.ethz.ch/Teaching/Datasets/bmw.dat"),</pre>

¹ "Autocorrelated" refers to correlation over time, i.e., correlation between X_t and X_{t-h} , h > 0.

-Exercise Series 4-

bmwlr should be a vector of 1000 observations.

R-hint: Function acf. For example, "autocorrelation of lag 1" (in the plot, with 1000 observations, indicated as lag 1 out of 999) means correlation between X_t and X_{t-1} . The plot shows also an acceptance region (at 5%-significance level) for testing the null hypothesis of uncorrelated observations.

d) Fit the data using the nonparametric regression methods Nadaraya-Watson, local polynomial and smoothing splines for the regression function v.

Comment on the results and compare the fits obtained using the mentioned nonparametric estimators.

R-hint: There are numerous functions to perform nonparametric regression and here are some of them. Consider the help-pages for details.

loess	library(stats)	local polynomial
<pre>smooth.spline</pre>	e library(stats)	smoothing splines
ksmooth	library(stats)	Nadaraya-Watson kernel regression
glkerns	library(lokern)	kernel regression with global optimal bandwidth
lokerns	library(lokern)	kernel regression with local optimal bandwith

Start with bmwloess $\langle - \text{loess}(x,y)$. This gives you an estimated degree of freedom (bmwloess\$trace.hat). Use this degree of freedom for the smooth.spline(x,y,df=...) function. Theoretically it is possible to adaptively choose the bandwidth for the ksmooth function, so that the trace of the hat matrix (=df) equals the degrees of freedom calculated above (see Series 3). As this will take up too much time on slow machines, we provide you with the result. The corresponding bandwidth for ksmooth is 3.53.

Check model assumptions but don't spend too much time on this. Note that for computing residuals it is necessary to know the fitted values at the data points. For ksmooth they are provided via parameter x.points and for loess and smooth.spline via fitted(). For the other methods, a very dense grid has to be chosen and the nearest value in the grid could be used.

Warning: The structure in the data is pretty unclear. This is not a very didactic example. Preliminary discussioon: Friday, April 4, 2008.

Deadline: Friday, April 11, 2008, at the beginning of the seminar.