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Exercise Series 10

1. In this series we are going to explore the dataset vehicle.dat which can be found at
"http://stat.ethz.ch/Teaching/Datasets/NDK/vehicle.dat". The dataset contains 846
observations of 19 variables. The aim is to classify the response (which is named Class) into
four different car types (bus,van,saab,opel) by means of 18 predictors such as compactness,
some information about the car axes and certain length ratios of the cars’ silhouettes.

For this, we are going to use two competing classification methods, namely CART-trees with
cost-complexity-optimized size and neural networks with variable number of hidden units.
Besides analyzing the classification performance on the vehicle data, we are also interested
in the predictive power of the two methods. To evaluate the generalization error we are going
to do a bootstrap analysis in exercise 2.

For CART the optimal tree size can be found automatically using the methods from package
rpart whereas for neural networks we have to find the optimal number of hidden units
ourselves by performing a 10fold inner cross-validation. To access the methods dealing with
neural networks you need to load the package nnet.

1. a) First of all, generate a classification tree using the methods from rpart. Set the
options cp = 0 and minsplit = 30 such that the resulting tree becomes too large
and overfits the data. To visualize the tree properly you have to make a suitable
choice for the parameters of plot and text. For details look at ?plot.rpart and
?text.rpart. Try to interpret the tree. Use set.seed(100) for reproducibility.
R-Hints:
library(rpart)
t.formula <- Class ~.
r.rp <- rpart(t.formula,data=???,control=rpart.control(cp=0.0,minsplit=30))
plot(r.rp,???)
text(r.rp,???)

b) Now it comes to pruning the tree from part a). We let rpart perform a cost-
complexity-analysis to find an optimal cp-value by cross-validating a sequence of
subtrees of the tree in a). Read off the optimal cp from the cost-complexity-table
(optimality is to be understood according to the one standard-error rule), visualize
the pruned tree with the optimal cp and finally calculate its misclassification rate.
R-Hints:
# to access the cost-complexity table use:
printcp(r.rp)
# to plot classification error (relative to root tree) vs. subtree size
# (dotted line represents one standard error limit) use:
plotcp(r.rp)
# to prune the tree use method "prune.rpart":
rp.pr <- prune.rpart(r.rp,cp = ???)
# for visualization use "plot" and "text" again:
# for misclassification rate look at:
?residuals.rpart



Computational Statistics (FS 2008) — Exercise Series 10 — 2

c) Next we want to fit a neural network with variable number of hidden units. To
prevent overfitting and speed up the optimization process neural networks can be
penalized by the sum of squares of the weights ωi. The regulating proportionality
factor is called decay, because a high decay-value obviously shrinks the weights.
Such a shrinkage only makes sense if the predictors are scaled to the same order of
magnitude (usually to have mean 0 and standard deviation 1). Therefore whenever
using the decay-option you should scale your data first. We have already performed
for you a search for the optimal decay-parameter by an inner cross-validation and
found dec.opt = 0.0045. It’s left to you to search for the optimal number of hidden
units size.opt. Write a function that performs a 10fold inner cross-validation to find
size.opt. The maximal size you should consider is size = 10. Bear in mind that
nnet chooses random starting values. This means that all your nnet-fits should be
averaged over, say, nreps = 10 realizations. Finally, calculate the misclassification
rate for the optimal nnet.
R-Hints:
# to scale a data frame look at:
?scale

# always use "trace=FALSE" and optimal decay "decay=dec.opt":
learn <- nnet(Class ~.,data = ???, trace = FALSE, size = ???,decay=dec.opt,...)

# as a prediction result for nnet you get the probabilities for the
# four different factors. Averaging over starting values can be done
# as follows (can be used inside your CV-code):
res <- matrix(0,nrow(data),length(levels(Class)))
for(rep in 1: nreps){

learn <- nnet(Class ~., data = ???, maxit = 500, trace = FALSE, ...)
res[???] <- res[???] + predict(learn, data[???])

}

# number of misclassifications:
sum(as.numeric(Class) != max.col(res/nreps))

d) Next try to illustrate the optimal CART and nnet-fits on a two dimensional cross-
section. To do that we choose the two most selective variables according to the
pruned CART tree from b) and set all other predictors to their mean values. On a
2D-grid we plot the classification decision boundary lines for the optimal CART tree
and for a few realizations of the optimal nnet and their average as well. You can use
the functions plt, plt.bdy and b1, all defined in the file.

http://stat.ethz.ch/teaching/lectures/FS_2008/CompStat/CARTnetplots.R.
Try to understand what those functions can do for you (t.ds and t.dsnet stand for
the vehicle and scaled vehicle data respecively) and then invoke them correctly with
the correct arguments. The resulting plots might look a bit strange, this is because
we are only looking at the projections of the high-dimensional vehicle-data onto a
two-dimensional cross-section. Such a plot has to be interpreted with care.
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2. To arrive at a decision whether CART or neural networks performs better in the
vehicle-setting, compute the bootstrap generalization error for the two methods (see
manuscript p.44). You might want to use the same bootstrap samples for both methods.
Because nnet and rpart are rather slow, you have to restrict yourself to a rather small
number of bootstrap-samples, eg. B=20. Choose nreps=5 for nnet here. Note that it is
not the same to evaluate the predictive performance of the two methods in order to find
optimal parameters in an inner CV-analysis on one hand and for a final full analysis on
the other hand. Therefore this exercise is definitely not redundant.

If you have solved exercise 1, then use the number of layers you have found out to
perform best in exercise 1. If you haven’t solved exercise 1, use 6 layers and a decay
value of 0.0045.

Preliminary discussion: Friday, May 16, 2008. Deadline: Friday, May 23, 2008.


