Bachelorprüfung: Statistik Musterlösung

- 1. a) (1 Punkt) Es muss ein ungepaarter Test durchgeführt werden, da die Test- und Kontrollmessungen auf unterschiedlichen Pisten durchgeführt werden (und nicht je 1 Test- und 1 Kontrollmessung pro Piste). Auf einen ungepaarten Test weist zudem die unterschiedliche Anzahl Messungen in den beiden Gruppen klar hin.
 - b) (2 Punkte) Die Grösse, über die man etwas zeigen will, ist der mittlere Unterschied $\mu_X \mu_Y$ der Schneeschmelzraten zwischen Behandlungs- und Kontrollgruppe. Der Effekt, den man nachweisen möchte, ist ein einseitiger. Also haben wir die Nullhypothese

$$H_0: \ \mu_X - \mu_Y = 0$$

und die Alternativhypothese

$$H_1: \mu_X - \mu_Y < 0$$
.

- c) (2 Punkte)
 - 1. **Modell**: X_i i.i.d. $\sim \mathcal{N}(\mu_X, \sigma_X^2)$, $i=1,\ldots,n$, und Y_i i.i.d. $\sim \mathcal{N}(\mu_Y, \sigma_Y^2)$, $i=1,\ldots,m$.
 - 2. Nullhypothese $H_0: \mu_X = \mu_Y$; Alternativhypothese $H_A: \mu_X < \mu_Y$
 - 3. Teststatistik:

$$T = \frac{\overline{X} - \overline{Y}}{S_{\text{pool}}} \sqrt{\frac{1}{1/n + 1/m}}$$

Verteilung der Teststatistik unter H_0 : $T \sim t_{60}$

- 4. Signifikanzniveau: $\alpha = 0.05$
- 5. Verwerfungsbereich:

$$K = (-\infty, -t_{60,1-\alpha}] = (-\infty, -1.67]$$

- 6. **Testentscheid:** $t=\frac{15.4-19.7}{4.15}\sqrt{\frac{1}{1/26+1/36}}=-4.03\in K$, also wird H_0 verworfen.
- d) (1 Punkt) Ein Vorzeichentest setzt gepaarte Daten voraus die hier nicht vorliegen.

2. a) (2 Punkte)

- S_n : Anzahl Männer die Medizin studieren.
- p=0.5: Wahrscheinlichkeit, dass ein Medizinstudent ein Mann ist (Männer und Frauen gleich verteilt)

$$S_{22} \sim \text{Bin}(22, 0.5)$$
 (1 P)
 $\mathbf{E}[S_{22}] = 22 \cdot 0.5 = 11$ (0.5 P)
 $\text{Var}(S_{22}) = 22 \cdot 0.5 \cdot 0.5 = 5.5$ (0.5 P)

b) (1 Punkt)

$$P[S_{22} = 10] = \begin{pmatrix} 22 \\ 10 \end{pmatrix} \cdot 0.5^{10} \cdot 0.5^{22-10}$$
 (0.5 P)

- c) (3 Punkte)
 - 1. **Modell**: S_n : Anzahl männliche Medizinstudenten; $S_n \sim \text{Binomial}(n, p)$ mit n = 22
 - 2. Nullhypothese $H_0: p=p_0=\frac{1}{2}$; Alternativhypothese $H_A: p\neq \frac{1}{2}$. (0.5 P)
 - 3. Teststatistik: $Z=\frac{S_n-np}{\sqrt{np(1-p)}}$ (1 P) Verteilung der Teststatistik unter H_0 : $Z\approx\mathcal{N}(0,1)$ (0.5 P)

4. Signifikanzniveau: $\alpha=0.05$

5. Verwerfungsbereich:

$$K = (-\infty, -\Phi^{-1}(1-\frac{\alpha}{2})] \cap [\Phi^{-1}(1-\frac{\alpha}{2}), \infty) = (-\infty, -1.96] \cap [1.96, \infty)$$
 (0.5 P)

6. **Testentscheid:** $z=2.132\in K$, daher wird die Nullhypothese verworfen. **(0.5 P)**

- **3.** 1) c.
 - 2) b
, logarithmieren der Zielvariable ist eine Standardlösung wenn ein kegelförmiges Anwachsen der Streuung mit \hat{y}_i auftritt.
 - 3) a, n = 14 und p = 2.
 - 4) b, $\frac{\hat{\beta}_1}{\widehat{s.e.}(\hat{\beta}_1)} = 0.95465/0.06349 = 15.036.$
 - 5) a, $t_{12:0.975} = 2.179 < 15.036$.
 - 6) d, $\hat{\beta}_1 \pm \widehat{s.e.}(\hat{\beta}_1) \cdot t_{12;0.975}$.
 - 7) c, es wird einen zweiseitigen Test ausgeführt.
 - 8) $e_{1} \log(p1980) = 1.13 + 0.95 \log(42.3) = 4.71 \text{ und } p1980 = \exp(4.71) = 110.75.$
 - 9) d, nach Definition von \mathbb{R}^2 .
 - 10) a, der F-Test hat einen sehr kleinen p-Wert.

- **4.** 1) $P[T \ge 1000] = 1 P[T < 1000] = 1 (1 \exp(-0.0004916 \cdot 1000)) = \exp(-0.4916) = 0.6116$, also b).
 - 2) d).
 - 3) $P[T \le t_H] = 0.5 \Leftrightarrow 1 \exp(\lambda \cdot t_H) = 0.5 \Leftrightarrow \exp(\lambda \cdot t_H) = 0.5 \Leftrightarrow \lambda \cdot t_H = \ln(2)$. Durch Umformen erhält man $t_H \approx 1410$ Sekunden, also c).
 - 4) $Var(Y) = 1/9 \cdot Var(X) = 1/9 \cdot 9 = 1$, also e).
 - 5) $Y \sim \mathcal{N}(\mathbf{E}[Y] = 3, \text{Var}(Y) = 1) \Rightarrow P[Y \ge 3] = \Phi(0) = 0.5, \text{ also c}),$
 - 6) Y hängt linear von X ab mit einer positiven Steigung, daher ist die Korrelation 1, also e).