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¨ Introduction

Robust statistics

• deals with deviations from ideal models

and their dangers for corresponding in-

ference procedures

• primary goal is the development of pro-

cedures which are still reliable and rea-

sonably efficient under small deviations

from the model, i.e. when the under-

lying distribution lies in a neighborhood

of the assumed model

Robust statistics is an extension of para-

metric statistics, taking into account that

parametric models are at best only approx-

imations to reality.
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Main aims of robust procedures

From a data-analytic point of view, robust

statistical procedures will

(i) find the structure best fitting the ma-

jority of the data;

(ii) identify deviating points (outliers) and

substructures for further treatment;

(iii) in unbalanced situations : identify and

give a warning about highly influential

data points (leverage points).

4



In addition to the classical concept of effi-

ciency, new concepts are introduced to de-

scribe

• the local stability of a statistical proce-

dure (the influence function and derived

quantities)

• its global reliability or safety

(the breakdown point).
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The ancient, vaguely defined problem of ro-

bustness has been partly formalized into math-

ematical theories which yield optimal robust

procedures and which provide illumination

and guidance for the user of statistical meth-

ods.
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Robustness

• its purpose is to safeguard against devi-

ations from the assumptions.

• It makes unnecessary getting the stochas-

tic part of the model right.

Diagnostics

• Its purpose is to find and identify devi-

ations from the assumptions.

• It helps to make the functional part of

the model right.
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¨ Sensitivity Curve

and Influence Function

Sensitivity curve

• Observations z1, z2, . . . with underlying

distribution (model) F .

• Statistic Tn (function of the observa-

tions)

SC(z; z1, . . . , zn−1, Tn)

= n [Tn (z1, . . . , zn−1, z) −Tn−1(z1, . . . , zn−1)
]

↓ n→ ∞
IF (z;T, F )
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Influence function of the mean

SC(z; z1, . . . , zn−1,meann)

=
meann(z1, . . . , zn−1, z)−meann−1(z1, . . . , zn−1)

1
n

=

1
n(z1 + . . .+ zn−1 + z)− 1

n−1(z1 + . . .+ zn−1)

1
n

=

1
nz −

(
1

n−1 − 1
n

)

· (z1 + . . .+ zn−1)

1
n

= z− meann−1(z1, . . . , zn−1)
↓ n −→ ∞

z− EFZ = IF (z; mean , F )
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Influence function of the least squares

estimator

Regression : yi = xTi β+ ui i = 1, . . . , n

Least Squares Est : β̂

Qn−1 =
1

n− 1

n−1∑

i=1

xix
T
i −→ Q, n −→ ∞.

SC
(
(x, y); (x1, y1), . . . , (xn−1, yn−1), LS

)

= n
n−1 Q−1

n−1 x(y − xT β̂n−1)
1

1+ 1
n−1x

TQ−1
n−1x

↓ ↓ ↓ ↓
1 Q−1 β 1

−→ IF (x, y;LS, F )

= Q−1x(y − xTβ)

when n→ ∞.

10



• Can find IF (z;T, F ) for most est.

• Gross-error sensitivity :

maximum (over z) of ||IF ||

WANTED
PROCEDURES

WITH
BOUNDED

INFLUENCE FUNCTION

Reward : ROBUSTNESS
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¨ Influence Function

z1, . . . , zn iid , zi ∼ F

Tn(z1, . . . , zn)

Tn(z1, . . . , zn) = T (Fn)

T : functional on some subset of all distr.

Fn : empirical distribution

(which assigns prob. 1
n to z1, . . . , zn).

Influence Function of T at F :

IF (z;T, F ) = limε→0
T ((1−ε)F+ε4z)−T (F )

ε

Hampel (1968), (1974), J. Am. Stat. Ass.

4z : distr. which puts mass 1 at any point z.

Note : IF (z;T, F ) = ∂
∂εT ((1− ε)F + ε4z) |ε=0
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Properties

• IF describes the normalized influence on

the estimate of an infinitesimal observa-

tion at z.

• IF is the Gâteaux derivative of T at F ,

or the integrand in the first term of the

von Mises expansion

T (G) = T (F ) +

∫

IF (z;T, F )d(G− F )(z)

+ O(||G− F ||2)

Math. treatment (e.g.) :

von Mises (1947), Ann. Math. Stat.

Fernholz (1983), Springer

Serfling (1980), Wiley
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• ε-neighborhood Pε(F ) of F :

Pε(F ) = {G|G = (1− ε)F + εH,H arbitrary }

d(G,F ) = supz ||G(z)− F (z)||
= ε · supz ||H(z)− F (z)|| ≤ ε.

For G ∈ Pε(F ) :

T (G) = T (F )+ε

∫

IF (z;T, F )dH(z)+O(ε2)

Bias curve: max bias over ε-neighborhood

b(ε;T, F ) = sup
G∈Pε(F )

‖T (G)− T (F )‖

b(ε;T, F )
︸ ︷︷ ︸

max bias over neighborh.

≈ ε· γ∗(T, F )
︸ ︷︷ ︸

gr err sens

γ∗(T, F ) = supz ||IF (z;T, F )||

IF describes the robustness (stability)

properties of T (·)
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• For G = Fn (empirical distr.)

Tn = T (F ) +
1

n

n∑

i=1

IF (zi;T, F ) + . . .

=⇒ √
n (Tn − T (F )) ∼as N (0, V (T, F ))

V (T, F ) = EF [IF (Z;T, F ) · IFT (Z;T, F )]
EF [IF (Z;T, F )] = 0

IF describes the efficiency properties of

T (·).
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• Connection to sensitivity curve

SC(z; z1, . . . , zn−1, Tn)

= n
[
Tn(z1, . . . , zn−1, z)− Tn−1(z1, . . . , zn−1)

]

=
T
(

(1−1
n)Fn−1+

1
n4z

)

−T (Fn−1)

1
n
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• Connection to jackknife

T(j) = Tn−1(z1, . . . , zj−1, zj+1, . . . , zn)

j = 1,2, . . . n

Pseudo-values :

T∗j = nTn − (n− 1)T(j)

= Tn+ (n− 1)
[

Tn − T(j)

]

︸ ︷︷ ︸

||
n−1
n SC(zj; z1, . . . , zj−1,

zj+1, . . . zn, Tn)

||o
n−1
n IF (zj;T, F )

Jackknife estimator :

Tukey (1958), Ann. Math. Stat.

T∗· = 1
n

n∑

j=1
T∗j

≈ Tn+
1
n

n∑

j=1
IF (zj;T, F )

(von Mises expansion; one-step est.)
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The stability analysis by means of the in-

fluence function can be performed on any

statistical functional e.g.

(as)varFTn
(as) level of a test = PF [Tn > kα]
. . .
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¨ Breakdown Point

The IF shows how an estimator reacts to a

small proportion of outliers.

Note that the sample mean cannot resist

even one outlier !

Other estimators can, because their IF is

bounded.

What is the maximum amount of ”pertur-

bation” they can resist?

Breakdown Point

Sample Z = (z1, . . . , zn)
Statistic Tn(Z)

bias (m;Tn, Z) = sup
Z′

||Tn(Z′)− Tn(Z)||

Z′ : ”corrupted” sample obtained by replac-

ing any m of the original n data points

by arbitrary values.

Breakdown point of Tn (at Z) :

ε∗(Tn, Z) = min
{
m
n | bias (m;Tn, Z) = ∞

}
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Examples:

Breakdown point of the

• mean: 1
n

• α-trimmed mean: α
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Robustness notions as

elementary calculus properties

of a function of one argument, namely its

continuity, differentiability, and vertical asymp-

tote.

The breakdown point tells us up to which

distance the ”linear approximation” provided

by the influence function is likely to be of

value.

21



¨ M-estimators

z1, . . . , zn iid

Huber(1964), Ann. Math. Stat.

Parametric model {Fθ|θ ∈ Θ}
M-estimator Tn :

n∑

i=1
ψ(zi, Tn) = 0

• M- estimators generalize MLE

(for which ψ(z, θ) = score = ∂
∂θ log fθ(z))

• To any asymptotically normal estimator,

there exists an asymptotically equivalent

M-estimator.

• Properties :

IF (z;ψ, F ) =M(ψ, F )−1ψ(z, T (F ))

√
n(Tn − T (F ))

D−→ N (0, V (ψ, F ))

V (ψ, F ) = M(ψ, F )−1Q(ψ, F )M(ψ, F )−T

M(ψ, F ) = EF [− ∂
∂θψ(Z, T (F ))]

Q(ψ, F ) = EF [ψ(Z, T (F )) · ψ(Z, T (F ))T ]
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How do we construct (optimal) robust

estimators?

Example: location

z1, . . . , zn ind. observations from a distribu-

tion with location parameter µ,

e.g. zi ∼ N (µ,1).

Two estimators of µ:

the mean and the median.

Both areM−estimators with score functions:

ψ(z, µ) = z − µ (mean)

ψ(z, µ) = sign(z − µ) (median)
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• Efficiency

Under normality the mean is the most

efficient estimator for µ, while the me-

dian has efficiency 2/π = 64%.

• Robustness

Their influence function is proportional

to their score function. The mean is not

robust (unbounded IF), while the me-

dian is robust (bounded IF).

−→ Best compromise between efficiency and

robustness?

At the normal model, the Huber estimator,

an M−estimator defined by the score func-

tion ψc(·), is the most efficient estimator for

µ with a bounded influence function.

For c = 1.345 its efficiency at the normal

model is 95%.
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ψc(r) =







r |r| ≤ c

c · sign(r) |r| > c.
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Huber’s estimator of location

Huber(1964), Ann. Math. Stat.

The Huber estimator Tn is an M−estimator

defined as the solution of the implicit eqn.

n∑

i=1

ψc(zi − Tn) = 0

Rewrite as:

n∑

i=1

wc(ri)(zi − Tn) = 0

i.e.

Tn =

∑n
i=1wc(ri)zi

∑n
i=1wc(ri)

,

where

ri = zi − Tn are the residuals and

wc(r) = ψc(r)/r

= 1 |r| ≤ c

=
c

|r| |r| > c.
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¨ Robust Inference

• robustness of validity

The level of the test should be stable un-

der small, arbitrary departures from the

distribution under the null hypothesis.

• robustness of efficiency

The test should still have a good power

under small, arbitrary departures from

the distribution under specified alterna-

tives.

Heritier & Ronchetti (1994), J. Am. Stat.

Ass.
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Example: Bartlett’s test

F-test for comparing two variances

Investigate the stability of the level of this

test and its generalization to k samples

(Bartlett’s test)

Distribution k = 2 k = 5 k = 10

Normal 5.0 5.0 5.0
t10 11.0 17.6 25.7
t7 16.6 31.5 48.9

Actual level in % in large samples of

Bartlett’s test when the observations come

from a slightly nonnormal distribution;

from Box(1953), Biometrika

In view of its behavior this test would be

more useful as a test for normality rather

than as a test for equality of variances!
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Example:

Two sample t-test and Wilcoxon test

Generate two samples of size 10 from N (0,1)

and N (1.5,1) respectively:

x

-1.7234313 -1.1028391 -0.8915296 -0.5941126

-0.4669093 -0.4511696 -0.3411728 0.3126089

1.1478631 1.2476020

y

-0.7651532 0.4464456 0.5107215 0.5611747

0.5929228 0.7118542 1.0405136 1.3153364

2.0116585 2.5419382

t-test: p-value = .011

Wilcoxon test: p-value = .018

Increase the largest value of the 2nd sam-

ple y(10) = 2.5419382 by steps of size .2

and recompute the p−value of the t-test and
Wilcoxon test.
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y(10)

pv
al
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12

t-test

Wilcoxon-test

p−value of the two sample t−test and Wilcoxon

test as the value of the largest observation

of the 2nd sample increases
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Beyond some value of y(10), the t−test never
rejects the null hypothesis.

In general:

• t−test: ∼ robustness of validity but no

robustness of efficiency

• Wilcoxon test: robustness of validity but

loses power in the presence of small de-

viations from normality
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¨ Linear Models

Y1, ..., Yn n independent observations of a

response variable:

yi = xTi β+ ui, i = 1, ..., n,

β ∈ Rq is a vector of unknown parameters,

xi ∈ Rq is a vector of explanatory variables,

and E[ui] = 0, var[ui] = σ2.

The least squares estimator β̂LS of β is a

M−estimator defined by the estimating equa-

tion:

n∑

i=1

(yi − xTi β) · xi = 0.
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Influence function of β̂LS:

IF (x, y; β̂LS, F ) = Q−1x · u ,
where u = y − xTβ and Q = E[xxT ].

Unbounded both w.r. to y and x.
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M−estimators for regression with

bounded IF

−→ Construct new robust M−estimators by

bounding u and x through score function

ψ((x, y), β) = ψc(u/σ) · x Huber

= ψc(u/σ) · w(x) · x Mallows

= ψc/‖Ax‖(u/σ) · x Hampel−Krasker

where ψc(·) is the Huber function, w(·) is

a weight function for the x′is, and A is a

positive definite matrix defined in the space

of the x′is.

The Hampel-Krasker estimator is the opti-

mal B− robust estimator when the IF is

measured by the Euclidean norm.
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Robust tests for regression

The three classes of tests for general para-

metric models can be defined here with the

score functions ψ((x, y), β) given above.

In particular, the likelihood ratio type test

for this model is the so-called τ− test; see

Ronchetti(1982).

This test is a robust alternative of the clas-

sical F−test for regression.
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Looking for structures in the data:

high breakdown point estimators
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The breakdown point ε∗ of M−estimators

depends on the design (the distribution of

the x′s).

Example

ε∗ of L1−estimator is 25% for uniform x′s.

More generally for M−estimators:

• ε∗ is arbitrarily close to 0 for longer-

tailed designs

• ε∗ ≤ 1/dim(β);

Maronna(1976), Ann. Stat.

−→ Search for high (50%?) breakdown point

equivariant estimators
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ui = yi − xTi β, i = 1, . . . , n

• Least Median of Squares (LMS)

Hampel(1975), Rousseeuw(1984)

min
β

medi u
2
i

• Least Trimmed Squares (LTS)

Rousseeuw(1984), JASA

min
β

h∑

i=1

u2
(i),

where u2
(1)

≤ . . . ≤ u2
(n)

• S−estimators

Rousseeuw and Yohai(1984)

min
β

s(u1(β), . . . , un(β)),

where s(·) is an M−estimator of scale

with a bounded ρ−fct., i.e. solution of

1

n

n∑

i=1

ρ(
ui
s
) = K
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Properties

• An S−estimator with a smooth ρ−function
is an M−estimator with score function

ψ(u/s)x and ψ(·) = ρ′(·) redescending

(multiple solutions!).

Ex. Tukey’s biweight

−→ asymptotic normality and correspond-

ing tests

• LMS and LTS are S−estimators with

discontinous ρ−functions

• High breakdown point (≈ 50%)

• Low efficiency

• Computational aspects
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To improve efficiency: MM−estimators

Yohai(1987), Ann. Stat.

(1) Compute a high breakdown point regres-

sion estimator, typically an S-estimator

and its resulting estimator of scale s based

on a loss function ρ0(·).

(2) Compute an M−estimator β̂ satisfying

the equation

n∑

i=1

ψ(
yi − xTi β̂

s
)xi = 0 ,

where ψ(·) is a smooth redescending

score function, such as Tukey’s biweight.

41



¨ Generalized Linear Models

Y1, ..., Yn n independent observations of a

response variable.

The distribution of Yi ∈ exponential family,

E[Yi] = µi, var[Yi] = V (µi) and

g(µi) = xTi β, i = 1, ..., n,

β ∈ Rq is a vector of unknown parameters,

xi ∈ Rq is a vector of explanatory variables,

g(.) is the link function.

42



• Estimation of β:

maximum likelihood or quasi-likelihood

(equivalent if g(.) is the canonical link,

e.g.

logistic regression: logit(µ) = log( µ
1−µ)

Poisson regression: log(µ) ).

• Inference and variable selection:

Standard asymptotic inference based on

likelihood ratio, Wald and score test

is readily available for these models.

However ...
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Robustness

Given n observations x1, ..., xn of a set of q

explanatory variables (xi ∈ Rq), and when

g(µi) is the canonical link, the maximum

likelihood estimator and the quasi-likelihood

estimator of β are the solutions of the fol-

lowing system of equations

n∑

i=1

ri
1

V 1/2(µi)
µ′i =

n∑

i=1

(yi − µi) · xi = 0, (1)

where ri =
yi−µi

V 1/2(µi)
are the Pearson residu-

als, µi = g−1(xTi β), and µ′i =
∂µi
∂β .

The maximum likelihood and the quasi-likelihood

estimator defined by (1) can be viewed as

an M-estimator with score function

ψ(yi;β) = (yi − µi) · xi. (2)
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Since ψ(y;β) is unbounded in x and y, the

influence function of this estimator is un-

bounded and the estimator is not robust.

Several alternatives have been proposed. One

of these alternative methods is the class

of M-estimators of Mallows’s type (Cantoni

and Ronchetti 2001, JASA) defined by the

score function

ψ(yi;β) = ν(yi, µi)w(xi)µ
′
i − a(β), (3)

where a(β) = 1
n

∑n
i=1E[ν(yi, µi)]w(xi)µ

′
i,

ν(yi, µi) = ψc(ri)
1

V 1/2(µi)
, and ψc is the Hu-

ber function defined by

ψc(r) =







r , |r| ≤ c

c · sign(r) |r| > c.

When w(xi) = 1, we obtain the so-called

Huber quasi-likelihood estimator.
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Standard inference based on robust quasi-

deviances is available.

−→ robust likelihood ratio test

is based on twice the difference between

the robust quasi-likelihoods with and with-

out restrictions

When the link function is the identity, this

test becomes the τ−test defined for linear

regression.
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¨ Elements of Multivariate Analysis
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x1, . . . , xn iid

xi ∈ Rp (xi ∼ N(µ,Σ))

Classical estimators of location µ and scat-

ter Σ (MLE under normal model)

x̄ =
1

n

n∑

i=1

xi

C =
1

n

n∑

i=1

(xi − x̄)(xi − x̄)T

Key for multivariate analysis:

• principal components analysis

• discriminant analysis

• factor analysis
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Influence of outliers on classical and robust

covariance estimates; from Huber(1981)
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New class of estimators; which properties?

• affine equivariance

• good robustness properties under local

perturbations (bounded IF)

• good robustness properties under global

perturbations (high breakdown point)

• good efficiency under a broad class of

underlying distributions

• n1/2 consistency, asymptotic normality

• computational simplicity

Not necessarily in order of priority and

possibly conflicting requirements!
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Affine equivariance:

location vector t(x1, . . . , xn) ∈ Rp

scatter matrix V (x1, . . . , xn) a p×p pos. def.
symm. matrix

Then ∀b ∈ Rp , B nonsingular p× p matrix:

t(Bx1 + b, . . . , Bxn+ b) = B · t(x1, . . . , xn) + b

V (Bx1 + b, . . . , Bxn+ b) = B · V (x1, . . . , xn) ·BT
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M−estimators for location and scatter

Maronna(1976), Ann. Stat.

Huber(1977)

(t, V ) solution of the implicit eqn.

t =

∑n
i=1w1(di)xi

∑n
i=1w1(di)

V =

∑n
i=1w2(di)(xi − t)(xi − t)T

∑n
i=1w2(di)

where

di = d(xi; t, V )

= [(xi − t)TV −1(xi − t)]1/2

(robust Mahalanobis distance)
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w.l.o.g. t(F ) = 0 and V (F ) = I.

IF (x; t, F ) ∝ w1(‖x‖)x
IF (x;V, F ) = −2Γ

where 1
ptr(Γ) ∝ w2(‖x‖)(‖x‖

2

p − 1)

Γ− 1
ptr(Γ)I ∝ w2(‖x‖)‖x‖2( xx

T

‖x‖2 − I
p)

−→ To bound the IF choose e.g.:

w1(d) = min(1, c/d)

w2(d) = min(1, c/d2)

Breakdown point ≤ 1/p
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High breakdown point estimators

for location and scatter

• Minimum Volume Ellipsoid (MVE)

Rousseeuw(1984), JASA

Find the ellipsoid {x|d2(x; t, V ) ≤ 1} with
minimum volume which covers at least

50% of the data −→ t, V

• Minimum Covariance Determinant (MCD)

Rousseeuw(1984), JASA

t is the average of the h points for which
the determinant of the cov. matrix is

minimal and V is the corresponding cov.

matrix

• S−estimators Rousseeuw & Yohai(1984)

Lopuhaa(1989)

min |V |
under the constraint

1

n

n∑

i=1

ρ(di) = b0,

for a bounded function ρ(·).
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Some common misunderstandings

• Robust statistics replaces classical statis-

tics.

• The normality assumption is ”guaran-

teed” by the central limit theorem.

• If the errors are non-normal, I change

the specification of the errors.

• I use classical procedures after removing

outliers. Therefore I do not need any

robust procedures.

• Robust statistics cannot be used when

the errors are asymmetric.
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¨ Messages

• There exist robust statistical procedures

which complement classical estimators

and tests for general parametric models.

• Whenever you can do a likelihood anal-

ysis, you can do a robust analysis.
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